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Introduction
The family Polyomaviridae is composed of small, non-
enveloped, double-stranded DNA viruses with a circular 
genome of approximately 4,000–7,000 nucleotides (nts) 
in length [1, 2]. These viruses exhibit a conserved organi-
zation with an early region and a late region separated by 
a non-coding regulatory region (NCRR) [3], which con-
tains the early and late promoters and the origin of repli-
cation. The early region encodes up to five non-structural 
tumor antigen proteins, which are involved in viral rep-
lication and oncogenesis. The large and small tumor 
antigen proteins (LT and sT, respectively) are universally 
expressed by polyomaviruses [1, 3]. The LT is a multireg-
ulatory protein that is required for the initiation of viral 
replication and activation of the late region promoter, but 
also for the suppression of its own promoter, thus regu-
lating early gene expression (reviewed in [4]). The precise 
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Abstract
Members of the family Polyomaviridae have a circular double-stranded DNA genome that have been identified in 
various hosts ranging from mammals to arachnids. Here we report the identification and analysis of a complete 
genome sequence of a novel polyomavirus, Raja clavata polyomavirus (RcPyV1), from a cartilaginous fish, the 
thornback skate (Raja clavata). The genome sequence was determined using a metagenomics approach with 
an aim to provide baseline viral data in cartilaginous fish in different ecosystems. The RcPyV1 genome (4,195 
nucleotides) had typical organization of polyomavirus, including early antigens (small T; Large T) encoded on one 
strand and late viral proteins (VP1; VP2) on the complementary strand. Maximum-likelihood phylogenetic analysis 
of the large T-antigen revealed that RcPyV1 clusters with a polyomavirus obtained from another cartilaginous fish, 
the guitarfish polyomavirus 1 (GfPyV1). These two share ~ 56% pairwise identity in LT and VP1 protein sequences. 
These analyses support the hypothesis that cartilaginous fishes have a specific lineage of polyomaviruses.
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function of the sT protein is unclear, but it has been sug-
gested to play a role in the regulation of the viral replica-
tion cycle (reviewed in [4]). The late region encodes the 
capsid proteins VP1, VP2 and VP3, which are important 
for virion assembly and nuclear egress [2, 3]. In addition, 
the polyomavirus simian virus 40 (SV40) also produces a 
late VP4 protein [5]. The early and late regions of poly-
omavirus (PyVs) genomes may further encode alterna-
tively spliced forms of the encoded proteins, such as the 
alternative large T antigen open reading frame (ALTO; 
[6] or the agnoprotein [7]). The agnoprotein is a regula-
tory protein essential for sustaining a productive viral life 
cycle, being involved in viral DNA replication, viral tran-
scription, virion maturation and release (reviewed in [4]). 
The ALTO protein has been shown to be expressed, but 
not being essential, during replication, most likely playing 
an accessory role [6]. More recently, the DUO protein has 
also been identified in different polyomavirus (https://
ccrod.cancer.gov/confluence/display/LCOTF/Polyomavi-
rus), however, there are no studies addressing its function.

PyVs have been identified in several mammals [8–11], 
birds [12], fishes [13, 14] and arthropods [15]. In fish, 
PyVs have been described in perciform fish such as the 
black sea bass (Centropristis striata) [16], the gilt-head sea 
bream (Sparus aurata) [17], the sharp-spined notothen 
(Trematomus pennellii) and emerald notothen (Tremato-
mus bernacchii) [1, 14], but also in cartilaginous fish taxa 
such as the giant guitarfish (Rhynchobatus djiddensis) [1, 
13]. Chimeric viral genomes that encode proteins related 
to those of PyVs have been reported in the eel species 
Anguilla japonica and A. marmorata [18–20]. Fish PyVs 
belong to at least two distinct evolutionary lineages, one 
comprising perciform-fish PyVs and the other encom-
passing cartilaginous fish PyVs [14], which only includes a 
single PyV detected in the giant guitarfish (GfPyV1; [13].

Cartilaginous fishes are the oldest group of extant ver-
tebrates, being the most basal living jawed vertebrates. 
Cartilaginous fishes can be divided into two very distinct 
subclasses, Elasmobranchii (sharks, rays and skates) and 
Holocephali (chimaeras), which branched off from each 
other almost 420  million years ago [21]. They present a 
complex immune system, exhibiting one of the great-
est functional diversities when compared to other ver-
tebrates [22]. Screening for pathogen communities in 
cartilaginous fish hosts has been mostly opportunis-
tic and descriptive, and has not covered the taxonomic 
and ecological diversity of the group. While only a few 
viruses have been isolated from cartilaginous fish taxa, 
the few data available show extensive retroviral diversity 
in the elephant shark (Callorhinchus milii) genome [23], 
and newly identified RNA and double stranded DNA 
(dsDNA) viruses in shark and ray species [13, 24–30].

Here, as part of an ongoing study aiming to provide a 
baseline data of the viruses associated with various car-
tilaginous fish with different ecologies, we report the 

identification of a complete polyomavirus genome from 
the thornback skate, Raja clavata, a coastal benthic elas-
mobranch from the order Rajiformes.

Materials and methods
Sampling
A total of ten Raja clavata individuals were collected 
during the Nephrops Survey Offshore Portugal survey 
(NepS (FU 28–29)) in June/July 2021 in R/V Mário Ruivo. 
This survey has been conducted yearly by the Portuguese 
Institute for the Sea and Atmosphere (IPMA), during the 
2nd quarter (May-July), under the EU/DGMARE Fisher-
ies’ Data Collection Framework (DCF), with the aim of 
monitoring the abundance and distribution of the main 
crustacean species, namely Nephrops norvegicus (Nor-
way lobster), Parapenaeus longirostris (deepwater rose 
shrimp) and Aristeus antennatus (red shrimp) (ICES, 
2016). The survey design follows a grid that covers the 
main crustacean fishing grounds in southwest and south 
coasts within the depth range of 200–750 m (ICES, 2022). 
The hauls are carried out during daytime at an average 
speed of 3.2 knots and the duration of each tow is 30 min.

DNA extraction, Illumina sequencing and data processing
DNA was extracted from the spleen tissue from each of 
the ten Raja clavata. Briefly, approximately of 12 mg of 
tissue was homogenized with 300 µl of SM buffer (0.1 M 
NaCl, 50 mM Tris/HCl-pH 7.4, 10 mM MgSO4) and dis-
rupted using a bioruptor. The homogenized sample was 
centrifuged at 10.000  rpm for 2  min and 200  µl of the 
supernatant was used to isolate viral DNA using the High 
Pure Viral Nucleic Acid Kit (Roche Diagnostic, USA), 
according to manufacturer’s specifications. The extracted 
viral nucleic acid was then enriched for circular DNA 
molecules using the rolling circle amplification (RCA) 
reaction with the TempliPhi™ kit (GE Healthcare, USA). 
The products from RCA were quantified using Qubit™ 
dsDNA HS Assay kit (Thermo Fisher Scientific, USA), 
pooled equimolarly, and sent to Macrogen Inc. (Korea) 
for library preparation (Nextera DNA XT) and sequenc-
ing on an Illumina Novaseq 6000. Following Illumina 
sequencing, the resulting pair-end-reads were trimmed 
using Trimmomatic [31], host genome sequences were 
removed using the RefSeq genome of the Rajiform 
Amblyraja radiata available at NCBI (RefSeq accession 
number GCF_010909765.2) as a reference with Bowtie2 
[32]. The remaining reads were de novo assembled using 
Megahit v1.2.9 [33].

Identification of viral genomes
The de novo assembled contigs were, in a first step, 
examined for putative viral matches using Diamond [34] 
against the NCBI RefSeq Virus database coupled with 
Cenote-Taker 2 [35]. The putative viral contigs with > 500 
nucleotides in length and e-value ≤ 10− 5 were further 
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analyzed with NCBI BLASTx/BLASTn searches against 
the refseq_protein and the nucleotide collection (nr/nt) 
databases, respectively.

Viral genome analysis
Annotated fish and arachnids polyomavirus sequences 
were downloaded on March 2023 from https://ccrod.
cancer.gov/confluence/display/LCOTF/Polyomavirus 
and were aligned using MAFFT under the algorithm 
L-INS-i [36].

RcPyV1 putative accessory proteins were annotated 
using Geneious software version 11.0.18 (https://www.
geneious.com), by searching the genomic sequence for 
ORFs of at least 25 codons.

Pairwise nucleotide divergence calculations were per-
formed for the two polyomaviruses isolated from carti-
laginous fishes (GfPyV1 and RcPyV1) using the Sequence 
Demarcation Tool (SDT) version 1.2 in MUSCLE mode [37].

Recombination analysis
The alignment was screened for recombination using 
RDP5 [38] with default settings. Only events with an 

associated p-value < 0.05 detected by three or more 
recombination detection methods implemented in RDP5 
were accepted as plausible evidence of recombination.

Phylogenetic analysis
The final dataset for the phylogenetic analysis included 
the polyomavirus identified in this study (RcPyV1) and 
the annotated polyomavirus sequences from fishes and 
arachnids retrieved from https://ccrod.cancer.gov/con-
fluence/display/LCOTF/Polyomavirus. A total of nine 
protein sequences for LT and VP1 were aligned using the 
L-INS-i algorithm on MAFFT [36]. There were a total 
of 973 positions for LT and 895 positions for VP1 in the 
final aligned dataset. Maximum likelihood (ML) phylo-
genetic trees for LT and VP1 proteins were constructed 
using MEGAX [39]. The rtREV + G + I + F and WAG + G 
were used as the best-fit amino acid model for LT and 
VP1, respectively, as determined by MEGAX using ML as 
statistical method and the Bayesian information criterion 
as measure, and 1000 bootstrap replicates. The final ML 
trees were rooted on the arachnids clade.

Fig. 1  Genomic organization of the Raja clavata polyomavirus (RcPyV1). The size of the genome is indicated in base pairs (bp). The predicted small T 
antigen (sT) appears in pink, the Large T antigen (LT) is in red, the predicted major capsid protein (VP1) is in blue and the minor capsid protein (VP2) is in 
green. Additional ORFs of potential interest are indicated in light gray, and the Duo protein is in orange
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Results
Polyomavirus genome analysis
A full genomic sequence of 4,195 nts was de novo assem-
bled from the short read data. This genome has similarities 

to other polyomaviruses. Thus, based on the recommen-
dation by the ICTV Polyomaviridae study group [40], the 
isolated viral genome was named Raja clavata polyoma-
virus 1 (RcPyV1, accession number OR159679). RcPyV1 
presents the typical genomic organization of polyoma-
viruses (Fig. 1; Table 1), including the LT and sT antigen 
genes of the early region in one strand, and the VP1 and 
VP2 genes of the late region on the opposite strand.

The predicted LT antigen (1,806 nts; 602 aa) is encoded 
by a single ORF and contains several conserved motifs [41] 
such as the polyomavirus conserved region 1 (CR1) motif 
(LQKLL), N-terminal Dna J-like motif (HPDKGG), zinc 
binding domain (CVLCKEDKVHSETH) and the helicase 
domain with ATPase motifs (GPYNSGKT and GLCPV-
GLE) (Fig.  1 and Table  1). The putative sT antigen-like 
(132 nts; 44 aa) was identified 5’ of LT antigen; however, 
none of its conserved motifs were found and the BLAST 
searches retrieved no hit to any proteins in GenBank.

The predicted VP1 protein, which is the major struc-
tural protein (1952 nts; 328 aa), and the predicted VP2 
protein (1030 nts; 269 aa) overlap by 62 nts, and VP2 
encodes a predicted N-terminal myristoylation sequence 
(MGAALAV). We also identified the Duo protein (324 
nts; https://ccrod.cancer.gov/confluence/display/LCOTF/
Polyomavirus) and other ORFs of potential interest 
(Fig. 1; Table 2). Yet, we were not able to identify the reg-
ulatory Agnoprotein detected in the genome of the close 
relative giant guitarfish polyomavirus 1 (GfPyV1)[1].

Pairwise comparisons of fish polyomaviruses using 
SDT showed that PyVs from the two cartilaginous fish 
share 55.8% and 56.0% of protein identity in LT and VP1 

Table 1  Predicted coding regions of RcPyV.
Gene Start Finish Length 

(nts)
Direction Size of 

prod-
uct (aa)

Viral protein 2 224 1030 807 Forward 269

DUO protein 483 160 324 Reverse 108

Viral protein 1 696 1952 984 Forward 328

Putative ORF1 1673 1425 249 Reverse 83

Putative ORF2 2365 1994 372 Reverse 124

Large T antigen 3965 2160 1806 Reverse 602

Small T antigen 4195 4064 132 Reverse 44

Table 2  Conserved motifs identified in predicted proteins of 
RcPyV.
Protein Name Motif Amino acid 

position
Viral pro-
tein 2

 N-terminal 
myristoylation

MGAALAV 1–7

Putative 
ORF2

pRB1 LHCYE 106–110

Large T 
antigen

CR1 LQKLL 10–14

DnaJ HPDKGG 39–44

NLS PRRSIN 88–95

Zinc-finger motif CVLCKEDKVHSETH 257–270

ATPase motif GPYNSGKT 376–383

ATPase motif GLCPVGL 454–461

Fig. 2  Percent identity between large T antigen (a) and VP1 (b) amino acid sequences of polyomaviruses from fish and arachnids. The figure was gener-
ated using SDT Virus Classification Tool
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proteins, respectively, (Fig. 2). Among the other encoded 
viral proteins, the protein identities are lower (22.5% for 
sT, 38.2% for VP2 and 44.6% in DUO protein). When 
comparing cartilaginous fishes to perciform fish or arach-
nids, pairwise identities are lower (26.1–30.1% and 26.1–
28.9%, respectively for LT and 25.8–31.2% and 22–26% 
for VP1, respectively).

Phylogenetic analysis
There were no recombination events detected between 
fish polyomaviruses. Maximum likelihood phyloge-
netic trees were constructed from LT (Fig. 3a) and VP1 
(Fig.  3b) amino acid sequences and both phylogenetic 
trees show that GfPyV1 and RcPyV1 cluster together in a 
specific lineage, reflecting the host topology.

Fig. 3  Maximum-likelihood phylogenetic trees of the (a) LT antigen and (b) VP1.
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Discussion
Polyomavirus genomes range from 3962 to 7369 nts, 
with the smallest PyV being identified in a cartilaginous 
fish, the giant guitarfish (Rhynchobatus djiddensis) [13]. 
The R. clavata polyomavirus reported here, RcPyV1, has 
a 4,195 nt-long genome, being the second smallest poly-
omavirus described to date.

Similar to other polyomaviruses, the RcPyV1 genome 
contains CDS homologous to sT, LT, VP1, VP2 and DUO 
encoding proteins (Fig.  1; Table  1). When compared 
with GfPyV1 [1], RcPyV1 lacks the Agnoprotein. The 
predicted sT antigen seems to be smaller (132 bp; 44aa) 
when compared to other vertebrates and, like in GfPyV1 
[13], it does not contain any conserved motif. Previous 
studies on fish polyomaviruses indicates that sT usually 
presents the DnaJ motif while the remaining ORF show 
no similarity among sequences [14]. This is in agreement 
with our BLAST search results that revealed that RcPyV1 
VP1 has no sequence identity to known proteins. In turn, 
the LT antigen, known to be crucial for viral replication 
[8], presents all the other conserved motifs described for 
polyomaviruses, with the exception of the retinoblas-
toma protein binding motif (pRB) which is specific to 
amniote polyomaviruses, and the protein phosphate 2 A 
(Fig. 1; Table 2). Within LT, we identified the CR1 motif 
(LQKLL), important for transcriptional regulation [42], 
the hexapeptide (HPDKGG) involved in protein interac-
tions, the putative nuclear localization signal (PRRSIN), 
the zinc-finger motif (CVLCKEDKVHSETH) and 
ATPase motifs (GPYNSGKT and GLCPVGLE), which 
are important to recruit cellular proteins involved in rep-
lication [43].

Additional ORFs of potential interest were detected. 
These include the putative ORF1 that presents the LxCxE 
motif (LHCYE), the putative ORF2 and DUO protein. 
DUO protein has been identified in mammals, birds, 
fishes and aracnids (https://ccrod.cancer.gov/confluence/
display/LCOTF/Polyomavirus), however its function and 
importance is still unkown.

According to ICTV Polyomavirdae study group recom-
mendations for the classification of polyomaviruses, poly-
omaviruses that share < 85% pairwise identity in the LT 
antigen should be considered as a separate species [40]. 
The LT antigen sequences from the two cartilaginous fish 
share 56% identity and thus GfPyV1 and RcPyV1 repre-
sent members of two different species of polyomaviruses. 
However, fish polyomaviruses have not yet been assigned 
to a genus [15].

No signs of infection were detected in the collected 
samples, however, since this virus was detected in the 
spleen, it is likely that RcPyV1 is not a contaminant 
from the environment, but rather a virus infecting the 
thornback skate. This is also supported by the previous 

identification of GfPyV1 in the giant guitarfish [13], 
which is phylogenetically related to RcPyV1.

It has been proposed that polyomaviruses evolution is 
driven by their hosts, although they often show higher 
among-sequence divergence levels compared to those 
of their hosts suggesting that other factors contribute to 
their evolution [1, 9]. Previous analysis [14] suggested 
that fish polyomaviruses are divided in two lineages: one 
lineage clustering viral genomes isolated from perciform 
fish and lacking the DnaJ domain, and the other lineage 
grouping viral genomes isolated from cartilaginous fish 
exhibiting the DnaJ domain. Our results are in line with 
these observations as in both phylogenetic trees, GfPyV1 
and RcPyV1 cluster together, but separately from the 
remaining perciform fish PyVs. Recombination, which 
plays an important role in the evolution of PyVs [1, 14], 
was not found in the GfPyV1 and RcPyV1.

In conclusion, we identified a novel polyomavirus from 
the cartilaginous fish Raja clavata, which presents the 
typical features of polyomaviruses: LT with conserved 
motifs, sT, VP1 and VP2 proteins. RcPyV1 belongs to 
the same evolutionary lineage as the previously identi-
fied GfPyV1, reinforcing that Perciform and cartilaginous 
fish PyVs are not monophyletic, but rather represent two 
divergent groups. The pairwise comparisons between 
RcPyV1 and GfPyV1 and the remaining fish PyVs are in 
line with this.
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