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Abstract

Transfection, the process of introducing purified nucleic acids into cells, and viral transduction, viral-mediated
nucleic acid transfer, are two commonly utilized techniques for gene delivery in the research setting. Transfection
allows purified nucleic acid to be introduced into target cells through chemical-based techniques, nonchemical
methods or particle-based methods, while viral transduction employs genomes or vectors based on adenoviruses,
retroviruses (e.g. lentiviruses), adeno-associated viruses, or hybrid viruses. Transfected DNAs are often tested for
potential effects on subsequent transduction, but it is not clear whether transfection itself rather than the particular
nucleic acid being introduced might impact subsequent viral transfection. We observed a significant association
between successfully transfected mobilized peripheral blood CD34+ human stem and progenitor cells (HSPCs) and
permissiveness to subsequent lentiviral transduction, which was not evident in other cells such as 293 T cells and
Jurkat cells. This association, apparently specific to CD34+ human stem and progenitor cells (HSPCs), is critical to
both research and clinical applications as these cells are a frequent target of transfection and viral transduction
owing to the durable nature of these cells in living systems. This finding may also present a significant opportunity
to enhance the success of viral transduction for clinical applications.
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Main text

Transfection, the introduction of DNA into a cell by a variety
of means, is widely used by researchers to deliberately genet-
ically modify target cells. A large number of chemical and
nonchemical techniques have been developed to allow for
both transient and permanent transfection of target cells, in-
cluding the use of calcium phosphate coprecipitates, basic
polymers such as DEAE Dextran, lipophilic molecules such
as lipofectamine, and electroporation [1-3]. Despite signifi-
cant advances and a growing number of techniques, no
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method is equally effective for all cell types or even for all
cells of a given cell type. Certain cell types are particularly
difficult to transfect either owing to their low rate of cell div-
ision (neurons), their low level of metabolic activity (resting
CD4+ T-cells), or a combination of defined and undefined
cellular features (CD34+ human stem and progenitor cells
(HSPCs)). One approach to improving the efficiency of intro-
ducing foreign genetic material into a target cell has been
viral transduction, the use of a virus or virally-derived vector
construct to mediate the delivery of the foreign genetic ma-
terial. This approach has encountered the same difficulties in
that no particular virus or construct is equally effective for all
cell types or even for all cells of a certain cell type.

CD34+ HSPCs are a cell type of particular interest for
transfection and viral transduction as these cells are a
durable and lasting source of circulating hematopoietic
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cells in vivo. A number of different approaches have
been investigated to understand the basis of the ob-
served limitations to transduction of these cells and im-
prove efficiency. Investigators have exposed CD34+
HSPCs to various chemicals such as Cyclosporin A,
Cyclosporin H, Rapamycin, stem cell factor, thrombo-
poietin, Flt3 ligand, interleukins, proteasome inhibitors
and other agents before transduction with various levels
of success [4—14].

While the primary focus on transfection has been to
study the impact on cells of the introduction of genetic
material it would seem possible and even likely either
that successfully transfected cells are different from cells
that are resistant to successful transfection, or that
transfected cells are modified in some way by the very
process of being transfected [15-18]. We were specific-
ally interested in the relationship between transfection
and viral transduction of cells and decided to test
lipofectamine-mediated transfection as well as electro-
poration for its possible effects on subsequent viral
transduction using a lentiviral-based vector.

We obtained 293 T cells and Jurkat cells from ATCC, and
peripherally mobilized CD34+ HSPCs from individual do-
nors from AllCells (pre-isolated). 293 T cells were cultured
in 20 mm X 100 mm Falcon standard tissue culture dishes in
Dulbecco’s Modified Eagle Medium (DMEM) containing
10% Fetal Bovine Serum (FBS), penicillin, streptomycin, L-
glutamine and 5% HEPES Buffer, and were passaged with
trypsin using Gibco 0.25% Trypsin-EDTA (1X). Jurkat Cells
were cultured in RPMI 1640 Medium containing 10% EBS.
Human HSPCs were cultured in serum free media (X-VIVO
20), with stem cell factor (SCF), Flt3 ligand (FLT3L), and
thrombopoietin (TPO) at 100 ng/ml. Lentiviral stocks for
transduction were prepared by collecting culture superna-
tants from 293 T cells transfected with plasmid DNAs en-
coding a modified pNL4.3 HIV-1-based vector (AIDS
Reagent Repository number 3418) (env. vpr~ nef’) with
ZsGreen replacing luciferase, and the vesicular stomatitis
virus glycoprotein (VSV-G) envelope (addgene cat#12259)
[19, 20]. The culture supernatants were collected, filtered
through a 045 pm filter, DNase treated and then concen-
trated by ultracentrifugation at 100,000 x g at 4° C for 2h
through a 25% sucrose cushion. Relative viral titer was deter-
mined through infection of permissive 293 T cell line with
serial dilutions of the virus preparation, scoring for percent
GFP positive by flow cytometry. For transfection we used
pmCherry-C1 (Clontech cat# 632524) plasmid DNA in
which a CMV promoter drives expression of the reporter.
We selected to use a CMV promotor as this is a standard
and effective promotor used in CD34+ cells for many appli-
cations including gene therapy targeting of human
hematopoietic stem and progenitor cells (HSPCs) [21].

To test 293 T cells for effects of transfection, cells were
plated in a 48-well plate at 50,000 cells per well. Twenty-
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four hours later the cells were transfected using lipofecta-
mine. 100 ng of pmCherry-C1 plasmid DNA in 16 ul of
Opti-MEM 1 Reduced Serum Medium (Gibco), was
mixed with 2 ul of Lipofectamine 2000 at room
temperature. Twenty minutes later the mixture was added
to the cells in wells containing 250 ul of culture media to
initiate the transfection [22]. Jurkat cells were transfected
by electroporation in cuvettes. 200,000 cells were sus-
pended in 20 ul of transfection reagent and 2 pg of
pmCherry-C1 plasmid DNA was added. The cells were
then electroporated using the Lonza 4D-Nuncleofector X
Unit with the SE Cell Line 4D-Nucleofector Kitl accord-
ing to the Amaxa 4D-Nucleofector Protocol for Jurkat
Clone E6.1 (https://bioscience.lonza.com). After transfec-
tion, 80 ul of culture media was added to the cuvette, and
50 ul of the cell suspension was removed and then placed
in culture wells containing 200 ul of media. CD34+ cells
were also transfected in cuvettes. 50,000 cells were sus-
pended in 20 ul of transfection reagent, and 2 pg of
pmCherry-C1 DNA were added. The cells were subjected
to electroporation using the Lonza 4D-Nucleofector X
Unit with the Lonza P3 Primary Cell 4D-Nucleofector X
Kit S according to the Lonza Amaxa 4D-Nucleofector
Protocol for unstimulated CD34+ cells (https://bioscience.
lonza.com). After the transfection process, 180 ul of cul-
ture media was added to each cuvette well and mixed with
the transfection solution. A total of 90 ul of media/solu-
tion was removed and placed in culture wells containing
160 ul of media.

In all cases, at twenty-four hours following transfec-
tion, cells were exposed to the lentiviral supernatants
[19]. The cells were transduced at various multiplicities
of infection (MOI) as determined through titration on
the highly permissive 293 T cell line. Infection of Jurkat
and CD34+ cells was performed with spinoculation,
whereby the cells were centrifuged at 800 x g for 60 min
at 37C° after treatment with concentrated viral media.
The 293 T cells were infected without spinoculation.

Reporter gene expression levels were quantified using
flow cytometry on a BD Biosciences LSR-II at twenty-
four hours post infection for 293 T and Jurkat cells, and
at 72 h post infection for CD34+ HSPCs. We gated on
viable cells (based ion FSC/SSC parameters) and then
read out GFP and cherry red signals. Importantly, both
reporter readouts demand that the introduced DNAs
enter live cells and initiate reporter gene expression.
Thus, all GFP and cherry red positive signals come from
viable cells and will not score any nonproductive uptake
of DNA or virus. We compared the efficiency of trans-
duction (scored as percent GFP positive) of the cells that
had not been successfully transfected (cherry red low)
with those that were transfected (cherry red high) using
flow cytometry. We found that transfection of 293 T
cells with plasmid DNA using Lipofectamine 2000
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followed by viral transduction at MOIs of 0.5 and 1 did
not show significant impacts on susceptibility to viral
transduction (Fig. 1). We then tested Jurkat cells trans-
fected by electroporation and again did not detect sig-
nificant impacts on susceptibility to viral transduction at
MOIs of 0.5 and 1 (Fig. 1).

In contrast, we observed that after transfection of CD34+
cells with plasmid DNA by electroporation, the successfully
transfected (cherry red high) cells showed an almost 3-fold
increase in the percentage of successfully transduced (GFP+)
cells at an MOI of 1 (Fig. 2). Importantly, the experiments
were performed multiple times with cells from multiple dif-
ferent patients. Data were compared for statistically relevant
differences by using Student’s ¢ test with two-tailed analysis
(P value < 0.001). Similar results were obtained over the mul-
tiple replicate experiments. Importantly, the selective differ-
ence in transduction efficiency is seen even though all the
cells in the preparation were subjected to the identical treat-
ment — the only distinction is the post-experiment filtering
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of the cells into the successfully transfected and the unsuc-
cessfully transfected subsets.

The results indicate a strong association between success-
ful transfection of mobilized peripheral blood CD34+ human
HSPCs and permissiveness to subsequent lentiviral transduc-
tion. It is notable that the enhanced susceptibility to trans-
duction was only observed in HSPCs and not in transformed
immortal fibroblastic or T cell lines. It is also important to
note that the phenomenon cannot be attributed simply to
the transfection process, because the increased susceptibility
is only seen in the cell population that was successfully trans-
fected and expressed the reporter gene, and not in the cells
in the pool that were exposed to the same treatment but
were not successfully transfected. The basis for the enhanced
transduction is unknown, but there are several possible ex-
planations. The cells most susceptible to transfection may
represent a population subset with distinct abilities to traffic
incoming nucleic acids or virion cores within the cytoplasm,
into the nucleus, or to suitable locations within the nucleus
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Fig. 1 Transfection of Jurkat and 293 T cells does not show significant impacts on susceptibility to viral transduction. a A representative flow cytometry
plot of Jurkat cells transfected with pmCherry-C1 plasmid DNA and subsequently virally transduced with ZsGreen pnl4.3 HIV-1-based vector is shown.
b The results of several independent experiments with viral transduction performed with MOIs of 0.5 and 1 is shown (n = 5). Data are displayed as
mean plus or minus the standard error of the mean (SEM). ¢ A representative flow cytometry plot of 293 T cells transfected with pmCherry-C1 plasmid
DNA and subsequently virally transduced with ZsGreen pnl4.3 HIV-1-based vector is shown. d The results of several independent experiments with
viral transduction performed with MOls of 0.5 and 1 is shown (n=5). Data are displayed as mean plus or minus the standard error of the mean (SEM).
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Fig. 2 Successfully transfected CD34+ cells are significantly more permissive to viral transduction. a A representative flow cytometry plot of CD34+ HSPCs
transfected with pmCherry-C1 plasmid DNA and subsequently virally transduced with ZsGreen pnl4.3 HIV-1-based vector is shown. b The results of several
independent experiments with viral transduction performed at MOI 1 is shown (n = 3). Data are displayed as mean plus or minus the standard error of the

for proviral integration. These steps are known to be ineffi-
cient in HSPCs [4, 5]. Close examination of the course of
viral intermediates might allow a determination of any spe-
cific step in the life cycle that is enhanced in the transfected
cells. Alternatively, the successful transfection event could se-
lectively alter the cells to promote transduction. For example,
the transfected cells might exhibit heightened DNA damage
responses, and such activation could well alter the response
to viral infections. We are working with a heterogenous cell
population and we did not analyze the surface markers be-
fore and after exposure to determine if any phenotypic
changes were induced or whether there was selective trans-
duction of any specific subsets within the mixed population
composed of true human HSCs (Lin - 34 + 38-90 + 45RA-
dim) as well as several HPC types. It would be interesting to
explore this in future experiments, as it may be that success-
ful transfection may have differential impacts on various sub-
sets or trigger changes in surface marker expression. Finally,
those cells that express the transfected reporter driven by the
CMV promoter may be a subset that are inherently espe-
cially susceptible to subsequent transduction. The character-
istics of the cells actively transcribing the reporter that would

account for the high sensitivity to virus are not known. In fu-
ture work it would be interesting to test whether selection
for expression driven by other promoters, such as the EFla
promoter, gives similar results.

Our prior work has demonstrated that the most sig-
nificant block in human CD34+ cells is prior to nuclear
entry and similar techniques involving quantitative PCR
could be used to better understand the mechanism of
this enhancement and the specific impact on various
stages in the viral cycle [4, 5]. The observation of in-
creased virus susceptibility is critical to both research
and clinical applications, because CD34+ cells are
widely-utilized targets in both settings. This finding is
especially relevant for surveys of genes introduced into
HSPCs by transfection for their potential impact on viral
permissiveness. We here used an HIV-1 based lentivirus
vector and it would be of interest to explore whether
our findings translate into impacts on other lentiviral
systems, as well as other viral delivery systems such as
AAV [23]. This finding may also present a significant
opportunity to enhance the success of viral transduction
for clinical applications.



Sebrow et al. Virology Journal (2020) 17:22

Abbreviations

Flt3 ligand: Fms-related tyrosine kinase 3 ligand; HSCs: Human stem cells;
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