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Abstract 

Background:  Human pegivirus (HPgV)—formerly known as GBV-C—is a member of the Flaviviridae family and 
belongs to the species Pegivirus C. It is a non-pathogenic virus and is transmitted among humans mainly through the 
exposure to contaminated blood and is often associated with human immunodeficiency virus (HIV) infection, among 
other viruses. This study aimed to determine the prevalence of HPgV viremia, its association with HIV and clinical 
epidemiological factors, as well as the full-length sequencing and genome characterization of HPgV recovered from 
blood donors of the HEMOPA Foundation in Belém-PA-Brazil.

Methods:  Plasma samples were obtained from 459 donors, tested for the presence of HPgV RNA by the RT-qPCR. 
From these, a total of 26 RT-qPCR positive samples were submitted to the NGS sequencing approach in order to 
obtain the full genome. Genome characterization and phylogenetic analysis were conducted.

Results:  The prevalence of HPgV was 12.42%. We observed the highest prevalences among donors aged between 18 
and 30 years old (16.5%), with brown skin color (13.2%) and men (15.8%). The newly diagnosed HIV-1 prevalence was 
26.67%. The HPgV genotype 2 (2a and 2b) was identified. No data on viral load value was found to corroborate the 
protective effect of HPgV on HIV evolution.

Conclusions:  This study provided information regarding the HPgV infection among blood donors from HEMOPA 
Foundation. Furthermore, we genetically characterized the HPgV circulating strains and described by the first time 
nearly complete genomes of genotype 2 in Brazilian Amazon.
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Background
Human pegivirus (HPgV), formerly known as GBV-C or 
hepatitis G virus (HGV), is a member of the Flaviviri-
dae family, belongs to the species Pegivirus C [1]. HPgV 
is an enveloped virus with a single-stranded, positively 
polarized RNA genome comprising approximately 9,400 

nucleotides. The viral genome is similar to the genome of 
the hepatitis C virus and contains a single open reading 
frame (ORF) located between the untranslated regions 
(UTRs) at the 5′ and 3′ ends of the viral genome. The 
5′-NTR region is highly conserved with an internal ribo-
some entry site (IRES) and is responsible for the initia-
tion of the translation of the viral RNA, resulting in the 
synthesis of a polyprotein of approximately 3,000 amino 
acid residues. Through the action of cellular peptidases 
and viral proteases, the polyprotein is cleaved to produce 
eight mature yet incompletely characterized proteins, 
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including the two structural (E1 and E2) and seven non-
structural (NS) proteins [2–4].

HPgV is transmitted among humans mainly through 
exposure to contaminated blood. This transmission pro-
file deems HPgV as a common coinfection with other 
viruses such as HIV-1, hepatitis C virus (HCV), and 
Ebola virus [5–7]. Up to 40% of the individuals infected 
with HIV and/or HCV are positive for HPgV infection [8, 
9]

People HIV-1 co-infected with HPgV experience slower 
disease progression that may be influenced by the inter-
ference of HPgV on the pathogenicity of HIV-1 [10, 11]. 
However, the mechanism by which HPgV mediates this 
protective effect remains inconclusive [12, 13].

Several studies carried out in different populations in 
the last decades in Brazil have shown varying prevalence 
rates of HPgV infections [14, 15]. Studies among healthy 
blood donors conducted in Brazil revealed prevalence 
rates of 19.5% and 9.7% among individuals with prior 
exposure and active infection, respectively. [16]. How-
ever, the most significant prevalence reported was among 
patients with HIV, with a value reaching up to 34% [17].

The prevalence of the virus is lower in the devel-
oped countries (1–5%) than in the developing countries 
-(approximately 20%), with South America exhibiting a 
prevalence rate of up to 14.6% among blood donors [4]. 
Seroprevalence studies revealed the presence of anti-E2 
antibodies in 19.5% of healthy blood donors [18]. How-
ever, data about the soroprevalence of HPgV viremia and 
its circulating strains in the Northern Brazilian popula-
tion are scarce, particularly among blood donors.

This study aimed to determine the prevalence of HPgV 
viremia and its association with clinical epidemiological 
factors and the presence of HIV, as well as the complete 
genome characterization of HPgV strains in volunteer 
blood donors from a public hemotherapy service in 
Northern Brazil.

Methods
Blood donors and the collection of serum samples
A cross-sectional study was performed to determine the 
prevalence of HPgV infection among blood donors from 
the HEMOPA Foundation between March 2017 and 
April 2018. Epidemiological data were obtained through 
access to the HEMOPA Foundation donor registry. The 
sample size was calculated using EpiInfo™ software [19] 
based on the presumed prevalence of 5% to 10% of HPgV 
in Brazil [17, 20]. For this calculation, the number of 
blood donors registered in 2016 at the HEMOPA Foun-
dation (63,501), 95% confidence level, and 20% margin 
adjustment was used to obtain a total of 366 individuals. 
A total of 459 serum samples (400 μL) from the blood 
donors from the HEMOPA Foundation were tested.

Extraction and detection of HIV, HCV, and HPgV nucleic 
acids
The extraction of nucleic acids was performed using 
the QIAmp RNA mini Kit (Qiagen®, Hilden, Ger-
many) according to the manufacturer’s recommenda-
tions. HIV and HCV detection were performed with 
Hemocenter’s Nuclear Acid Test Platform (NAT) 
using the HIV/HCV NAT kit (Bio Manguinhos®, Rio 
de Janeiro, Brazil), according to the manufacturer’s 
recommendations.

The presence of HPgV nucleic acid was evaluated by 
the RT-qPCR, using the custom Assay TaqMan® Fast 
Virus 1-Step, developed by AB Applied Biosystems (Fos-
ter City, California, EUA), following the manufacturer’s 
Fast protocol as follows: 1 cycle of reverse transcription 
(RT) for 2 min at 50 °C; inactivation of Reverse Transcrip-
tion (RT)/start of denaturation (1 cycle) for 20 s at 95 °C; 
amplification for 40 cycles of 95 °C for 3 s and 60 °C for 
30 s. The selected primers corresponded to the 5′-UTR of 
the viral genome according to GenBank NC_001710 and 
were as follows: RTG1 (GTG​GTG​GAT​GGG​TGA​TGA​
CA; sense), RTG2 (GAC​CCA​CCT​ATA​GTG​GCT​ACCA; 
antisense), and NFQ (5′-FAM-CCG​GGA​TTT​ACG​ACC​
TAC​C3′; probe) [17].

Quantification of HIV‑1 and HPgV plasma viral load
HIV-1 viral load was measured in a Real-Time Rotor-
Gene® Q platform using artus HI Virus-1 RG RT-PCR 
(QIAGEN Hilden, Germany) and HPgV viral load was 
measured in a Real-Time LightCycler® 480 Instrument 
II (Roche Applied Science, Penzberg, Germany) using 
TaqMan® Fast Virus 1-Step Master Mix (Foster City, 
California, USA). Both methods strictly followed the 
manufacture´s recommendation.

High‑throughput sequencing
The RNA, obtained in the nucleic acid extraction step, 
was quantified in Qubit 2.0 fluorometer (Thermo Fisher 
Scientific), using the QubitTM RNA HS Assay Kit 500 
assays (Invitrogen by Thermo Fisher Scientific). Then, 
cDNA was synthesized using the cDNA Synthesis System 
Roche® kit (Roche Applied Science), as described by the 
manufacturer. The subsequent step was the quantifica-
tion of cDNA using the Qubit 2.0 fluorometer (Thermo 
Fisher Scientific), using the QubitTM dsDNA HS Assay 
Kit (Invitrogen by Thermo Fisher Scientific) and analy-
sis of cDNA integrity in the equipment 2100 Bioanalyzer 
(Agilent Technologies) using the high sensitivity DNA 
reagents kit (Agilent Technologies). Genome sequencing 
was performed using the HiSeq 2500 platform (Illumina) 
as previously described [21].
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Bioinformatics analysis
Generated reads were filtered, adapters and reads with 
Phred quality scores below 20 and size less than 50 nt, 
were removed using Trim Galore 0.4.4, Cutadapt and 
Prinseq-lite 0.20.4 software [22–24]. The filtered reads 
were used in de novo assembly strategy applying two 
software: IDBA-UD v.1.1.3 [25] and MEGAHIT v.1.1.3 
[26], both set to a k-mer range of 21 to 91, varying every 
10 k-mer. For the removal of redundant data, generated 
contigs were processed using CD-Hit-Est v.4.7 [27] set 
to a threshold of 90% identity. Then, the non-redundant 
contigs were aligned against the NCBI non-redundant 
protein database using the Blastx (https​://blast​.ncbi.
nlm.nih.gov/Blast​.cgi?PROGR​AM=blast​x&PAGE_
TYPE=Blast​Searc​h&LINK_LOC=blast​home) algorithm 
and the software Diamond v.0.9.22 [28].

Genome characterization and phylogenetic inference
The HPgV genomes sequences, identified by the 
Blastx algorithm, were used for predicting the cod-
ing region (Open Reading Frame; ORF), as well as the 
5′-UTR and 3′-UTR regions using the Geneious v9 tool. 
Viral genomes were aligned with other HPgV com-
plete genomes available in GenBank database using the 
MAFFT v7 software [29]. For phylogenetic analyses, 
complete ORFs from aligned genomes were used to per-
form the phylogenetic reconstructions using the maxi-
mum-likelihood method, generated by RAxML v.8.2.12 
[30], applying 1000 bootstrap replicates [31] and the best 
nucleotide replacement model calculated by JModelTest 
[32]. Complete genome sequences of HPgV obtained in 
this study have been submitted to GenBank (accession 
numbers MN215894–MN21591).

Statistical analysis
The differences between the groups were analyzed with 
the chi-square test, G test of independence, Student’s 
t-test, and odds ratio. The level of significance of α = 0.05 
was adopted for the rejection of the null hypothesis. 
Statistical analyses were performed using the BioEstat 
program version 5.3 and GraphPad Prism version 8; 
Microsoft Excel Professional 2007 program was used for 
data processing and to prepare tables and databases.

Results
Plasma samples were obtained from 459 donors at the 
time of screening. The prevalence of HPgV in the sam-
ples was 12.42% (n = 57) and a total of 26.14% (n = 120) 
of the donors were HIV positive, diagnosed through rou-
tine tests carried out at the HEMOPA Foundation. The 
HPgV prevalence among HIV donors was 26.67% (n = 32, 
p < 0 0.0001). HIV positive donors were four times more 

likely to have HPgV infection than those HIV negative 
(odds ratio = 4.56, p < 0.0001, 95% confidence interval 
[CI]:2.57–8.10).

The highest prevalences of HPgV were observed among 
donors with ages ranging from 18 to 30 years old (16.5%, 
p = 0.024), men (15,8%, p = 0.005) with brown skin color 
(13.2%, p = 0,462) and 12 or more years of education 
(24.0%, p < 0.0001) (Table 1).

In 18 of the 57 HPgV positive samples (31.6%) near-
complete genomes sequences were obtained. The BlastX 
result of the 18 genomes obtained showed 91% to 
93.24% identity with Human pegivirus sequences from 
the United Kingdom (LT009489 and LT009494), France 
(MH053115) and Japan (D87255), available from Gen-
Bank / NCBI (Table  2). The pairwise alignment of the 
polyprotein amino acid sequences of these four strains of 
the bank along with the 18 described sequences showed 
an identity of 98.6%.

All nearly complete genome sequences showed the 
common genome organization related to members of the 
HPgV: unique and large ORF flanked by 5′and 3′ UTRs. 
The phylogenetic tree represented the genotypes (1, 2a, 
2b, 3, 4, 6 and 7), including two subgenotypes (2a and 
2b). All the sequences of the HPgV genome obtained 
clustered with sequences of the HPgV genotype 2, sub-
genotypes 2a and 2b, with high bootstrap values (> 90%) 
(Fig. 1).

Viral load was compared in two groups. First we com-
pared HIV viral load in monoinfected (HIV-1) and coin-
fected (HIV-1/HPgV). Then, we compared HPgV viral 
load in monoinfected (HPgV) and coinfected group 
(HPgV/HIV-1). We found a higher HIV-1 viral load in the 
coinfected (2.72 Log10) than in the monoinfected group 
(2.00 Log10; Fig. 2a). While a higher HPgV viral load (4.28 
Log10) was observed in the monoinfected group in com-
parison with coinfected group (HPgV, Fig. 2b).

Discussion
The prevalence of HPgV-1 among blood donors was 
12,4%, which is consistent and not significantly different 
from the expected prevalence in developing countries (up 
to 20%) [4, 33]. The prevalence calculated in this study 
was 2,8% higher than reported Slavov et al. [34] in a study 
among blood donors from the city of Macapá (northern 
Brazil). Previous studies have shown that the prevalence 
of HPgV among blood donors in most regions of Brazil 
varies from 5 to 10% [16, 35–38], although Da Mota et al. 
[39] have found a high prevalence of 21.7% in the south-
ernmost region of Brazil.

In our findings, the highest prevalence of HPgV 
occurred among subjects between 18 and 30 years of age 
(16.5%), males (15.8%), and brown individuals (13.2%). It 
is important to highlight that the epidemiological profile 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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of the donors was similar to that observed in the epide-
miology of HIV/AIDS in Brazil, wherein the majority of 
the infected individuals were male and young subjects 

(15 to 39 years) with up to 11 years of study (completed 
high school) [40].

The prevalence of HPgV among the individuals diag-
nosed with HIV-1 reported in this study was 26,7%, 

Table 1  Clinical epidemiological data on the prevalence of HPgV among blood donors

Variable/category Total HPgV+ HPgV− p-value

n (%) n (%) n (%)

Age (years)

18–30 224 48.8 37 16.5 187 83.5 p = 0.0273

31–50 197 42.9 18 9.1 179 90.9

 ≥ 51 38 8.3 2 5.3 36 94.7

Skin color

Brown 356 77.6 47 13.2 309 86.8 p = 0.462

White 84 18.3 9 10.7 75 89.3

Black 19 4.1 1 5.3 18 94.7

Sex

Male 284 61.9 45 15.8 241 84.9 p = 0.0056

Female 175 38.1 12 6.9 161 92.0

Education (years of study)

 ≥ 12 146 31.8 35 24.0 111 76.0 p < 0.0001

9 to 11 259 56.4 19 7.3 240 92.7

 ≤ 8 54 11.8 3 5.6 51 94.4

Co-infection

HIV+  120 26.1 32 26.7 88 73.3 p < 0.0001

HIV−  339 73.9 25 7.4 314 92.6

Table 2  BlastX result for 18 nearly complete HPgV genome sequences obtained from blood donors from Belém-PA-Brazil

Sample Genome lenth Mean cover Best hit Query 
cover (%)

E-value Identity (%) Accession

P01 8,392 14,8 Human pegivirus isolate 56,330,229 100 0 92.14 LT009489

P02 8,995 20,1 Human pegivirus isolate JD2B2C 99 0 91.00 MH053115

P09 8,933 22,9 Human pegivirus isolate 56,330,229 99 0 92.34 LT009489

P13 9,101 593,8 Human pegivirus isolate JD2B2C 100 0 91.63 MH053115

P21 9,172 448,6 Hepatitis G virus 100 0 93.24 D87255

P22 8,811 26 Human pegivirus isolate JD2B2C 99 0 91.60 MH053115

P23 9,190 133,7 Human pegivirus isolate JD2B2C 99 0 91.73 MH053115

P24 9,306 386 Human pegivirus isolate 56,330,229 99 0 92.80 LT009489

P25 9,241 327,1 Human pegivirus isolate JD2B2C 99 0 91.64 MH053115

P26 9,189 143,7 Human pegivirus isolate JD2B2C 99 0 91.92 MH053115

P27 8,873 22,6 Human pegivirus isolate 56,330,229 99 0 92.29 LT009489

P28 8,913 32,5 Hepatitis G virus 99 0 93.21 D87255

P31 9,521 538,5 Human pegivirus isolate 56,330,229 99 0 92.51 LT009489

P32 9,256 182,7 Human pegivirus isolate 56,330,286 99 0 92.25 LT009494

P33 9,409 640 Human pegivirus isolate 56,330,286 100 0 92.40 LT009494

P34 9,270 146,1 Human pegivirus isolate 56,330,229 100 0 92.44 LT009489

P35 9,198 755,6 Human pegivirus isolate 56,330,229 100 0 92.22 LT009489

P55 9,203 566,4 Human pegivirus isolate 56,330,229 100 0 92.27 LT009489
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Fig. 1  Phylogenetic tree of Human pegivirus (HPgV) generated with complete polyprotein ORF, using RAxML with the GTR + I + G + F nucleotide 
substitution model using 1000 bootstrap replicas displaying only values greater than 70

Fig. 2  Virological profiles of newly diagnosed blood donors with HIV-1 and HPgV. a Comparison of plasma HIV-1 viral load between HIV-1 
monoinfected group and HIV-1/HPgV coinfected group. b Comparison of plasma HPgV viral load between HPgV monoinfected group and HPgV/
HIV-1 coinfected group
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which is 9,7% higher than that reported by Miranda et al. 
[41]. [38] The high prevalence of HPgV among HIV-1 
individuals has been reported in several studies in Brazil 
and the world [42–44]. The association between the pres-
ence of HPgV and HIV is owing to the fact that HPgV 
likely acts as a protective factor for the development of 
HIV [44–46].

As was seen in some studies, HIV-1 infected people 
have reduced mortality when co-infected with HPgV [47, 
48]. This protective effect may be due to the inducing 
effect of HPgV on CD4 and CD8 T lymphocytes, leading 
to antiretroviral factors secretion and also to the reduc-
tion of the expression of the HIV-1 co-receptor CCR5, as 
reported by Jung et al. and Xiang et al., on in vitro experi-
ments [49, 50]. Nevertheless, the present study showed 
no evidence of viral load value that corroborated with 
the protective effect of HPgV in the evolution of HIV-1, 
instead, HIV-1 viral load in the coinfected group (HIV-1/
HPgV) was 0.72 Log10 (p = 0,002) higher than in a mono-
infected group (HIV-1 positive). Another consideration is 
that all individuals in our sample were newly diagnosed 
with HIV-1 during the acute phase, suggesting that HPgV 
does not exert a protective effect on the pathogenesis of 
HIV-1 during the acute phase as suggested Bailey et  al. 
[51].

On trials investigating the interaction of SPgV (Sim-
ian Pegivirus) and SIV (Simian immunodeficiency virus) 
infection, Bailey et al. found no evidence of a protective 
effect of SPgV on the evolution of SIV in the acute phase 
of infection. The protective immunomodulatory effect 
of SPgV was observed only in the chronic phase of SIV 
infection [51]. Extending this observation, our findings 
corroborate the hypothesis suggested that HPgV does not 
exert a protective effect during the acute phase of HIV 
infection, since the HIV positive individuals in this study 
were all newly diagnosed. Otherwise, as seen in several 
other studies, there is a likely beneficial relationship 
between HPgV and the chronic phase of HIV infection 
[4, 47, 52, 53].

The phylogenetic analysis revealed the presence of gen-
otype 2 and the subtypes 2a and 2b in the studied popu-
lation. These findings corroborate previous studies that 
identified these same genotypes in other regions of Brazil 
[20, 35, 42] and in Brazilian Amazon [34].

HPgV is known as a non-pathogenic virus and is not 
part of the routine diagnosis in the HEMOPA Founda-
tion, but further studies are necessary to evaluate the 
unclear aspects related to HPgV infection especially 
those related to viral biology and interaction with HIV-1. 
This study genetically characterized and identified, by the 
first time, the circulating strains of HPgV among blood 
donors from HEMOPA Foundation and described by the 

first time nearly complete genomes of genotype 2 in Bra-
zilian Amazon.

Conclusions
This study provided information regarding the HPgV 
infection among blood donors from HEMOPA Foun-
dation. Furthermore, we genetically characterized the 
HPgV circulating strains and described by the first time 
the genotype 2 genomes in the Brazilian Amazon region.
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