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Abstract

Background: Despite the high yearly prevalence of Influenza, the pathogenesis mechanism and involved genes
have not been fully known. Finding the patterns and mapping the complex interactions between different genes
help us to find the possible biomarkers and treatment targets.

Methods: Herein, weighted gene co-expression network analysis (WGCNA) was employed to construct a co-expression
network among genes identified by microarray analysis of the pediatric influenza-infected samples.

Results: Three of the 38 modules were found as the most related modules to influenza infection. At a functional level, we
found that the genes in these modules regulate the immune responses, protein targeting, and defense to virus.
Moreover, the analysis of differentially expressed genes disclosed 719 DEGs between the normal and infected subjects.
The comprehensive investigation of genes in the module involved in immune system and viral defense (yellow module)
revealed that SP110, HERC5, SAMD9L, RTP4, C19orf66, HELZ2, EPSTI1, and PHF11 which were also identified as DEGs (except
C19orf66) have the potential to be as the biomarkers and also drug targeting for the treatment of pediatric influenza.

Conclusions: The WGCN analysis revealed co-expressed genes which were involved in the innate immune system and
defense to virus. The differentially expressed genes in the identified modules can be considered for designing drug
targets. Moreover, modules can help to find pathogenesis routes in the future.
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Background
Influenza virus is one of the most incident infectious
agent, which is mainly classified into three types of A, B,
and C. The prevalence amount of type A is more than
other influenza types in the world. Also, the burden of
seasonal influenza virus caused the infection of 3–5 mil-
lion cases with severe illness symptoms [1]. Influenza vi-
ruses affect the human life more than other respiratory
illnesses. The pathogenesis of Influenza has not been yet
well understood since it depends on the immune system
and viral determinants. Moreover, the previous infection
or vaccination causes the cellular immunity which af-
fected the efficacy of infection with various seasonal,

zoonotic, and pandemic influenza viruses [2]. Therefore,
different hosts can have distinct effects on the incidence
level of the disease.
Microarray is a high-throughput technique has the

ability of simultaneous measuring of thousands of gene
expressions and so generating tremendous data. In order
to general and then detailed evaluation of the biological
phenomena in each study, the special and sometimes
complicated statistical analysis is required [3, 4].
Many genes are involved in the pathogenesis routes of

influenza infection, which constitute the complicated
networks. Among various genes, the change in expres-
sion levels of some genes regulate the expression of
others, so they can put in a group called module. These
modules have different biological responsibility. Also,
each group may activate various pathways and control
specific functions [5]. Finding the modules can help re-
searchers to design the proper treatment route by
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targeting key proteins with specific functions. Moreover,
finding novel biomarkers including important functions
in a pathogenic-related disease is of importance for
prognosis, risk assessment, and progression monitoring
of disease [6, 7]. Biomarkers can be detected by calcula-
tion of differentially expressed genes between the normal
and infected subjects, however, discovery the proteins
that each biomarker is in connection with them, help to
find the key pathways functioning in a disease.
Exploration of the involved genes which have close

correlation patterns could be achieved by weighted gene
co-expression network analysis (WGCNA) [8]. Through
this algorithm, the highly co-expressed genes are placed
in one module and different modules may contain key
genes implicated in the pathogenesis process [9].
In this study, we aimed to find modules containing

highly co-expressed genes which involve in the pediatric
influenza pathogenesis. Also, the key genes with the
prognosis potential were identified. Moreover, the genes
in each module were analyzed using Gene Ontology
(GO) function and pathway enrichment methods.

Methods
Gene expression data and preprocessing
The microarray gene expression dataset GSE29366 was
downloaded from the NCBI Gene Expression Omnibus
(GEO). It contains 12 healthy subjects and 19 Pediatric
influenza patients which their whole blood samples were
analyzed. All of the involved children in this study were
in the age range from 1.5 months to 17months. All indi-
viduals developed primary infection and showed signs of
the disease. The Illumina HumanWG-6 v3.0 expression
beadchip (GPL6884) was used to produce the sequen-
cing data. The goodSamplesGenes function in Weighted
Gene Co-expression Network Analysis (WGCNA) was
used to filter the samples and genes with too many miss-
ing entries and zero-variance genes [10].

Weighted gene co-expression network
The weighted gene co-expression network based on
Pediatric influenza samples was constructed by R pack-
age “WGCNA” [11]. To this purpose, the adjacency
matrix containing Pearson’s correlations between each
gene pair was firstly generated with the optimized soft
power and then was transformed into a Topological
Overlap Matrix (TOM). The highly co-expressed genes
were then grouped by hierarchical clustering. In the next
step, the dynamic tree cut algorithm was utilized to cut
clustering dendrogram branches and generation of the
modules. The gene expression profiles of each module
were summarized by the first principal component
named as module eigengene (ME). Moreover, each mod-
ule denotes as discrete colors. Finally, the similar

modules (module eigengenes) were merged into a single
module and was then used to further interpretation [12].

Finding differentially expressed genes
To detect the differentially expressed genes (DEGs)
among normal and infected subjects, GEO2R tool in the
GEO database was employed. Benjamini-Hochberg FDR-
adjusted p-values < 0.05 was selected as a criterion for
finding DEGs.

Finding candidate genes and their functional annotations
The top highly interconnected genes in each module
were identified as hub genes. Afterward, they were sub-
mitted in the Search Tool for the Retrieval of Interacting
Genes (STRING) database to build the protein-protein
interaction network (PPIN) [13]. Then, the nodes with
zero betweenness and degree one were set aside from
the constituted network. The PPIN was visualized using
Gephi 0.9.2 [14]. The gene ontology and pathway enrich-
ment analysis were carried out in g:profiler website
(https://biit.cs.ut.ee/gprofiler/) [15].

Results
Data preprocessing and sample selection
Gene expression dataset GSE29366 was firstly quantile
normalized and log-transformed. Then, the probe sets
with unknown gene name were removed. The samples
were evaluated in terms of missing entries and zero-
variance genes. The number of 15,436 probes remained
from 28,742 probes. As shown in the cluster tree (Fig. 1),
two samples (GSM725944 and GSM725948) are clus-
tered in different branches and excluded for further
analysis.

Weighted gene co-expression network construction and
modules identification
To exploration the required criterion for WGCNA, the
scale-free topology fit index was calculated for various soft-
thresholding power. As Fig. 2 shows, it reaches 0.84 for a
power of 7 while a relatively high mean connectivity
remained. This value was then applied to measure the adja-
cency and topological overlap matrixes. To specify the
groups of co-regulated genes identified as modules, the dy-
namic cut-tree algorithm was utilized (Fig. 3). After mer-
ging the similar modules by applying a threshold of 0.25, 38
modules were identified to further analysis (Fig. 4a). Each
row and column of the heatmap plot is in accordance with
one module, in which red denotes positive correlation and
blue reveals a negative correlation. Figure 4b shows the
dendrogram and dynamic cut tree before and after merging
modules. To determine the biologically meaningful mod-
ules, all modules were submitted into the STRING and
ones which their proteins were highly connected, were se-
lected. Figure 5 shows the protein-protein interaction
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Fig. 1 Hierarchical cluster tree of samples

Fig. 2 Analysis of the scale-free fit index (left panel) and mean connectivity (right panel) for various soft-thresholding powers
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networks (PPINs) of each module, in which mediumpur-
ple2 has 18 nodes and 46 edges, skyblue has 41 nodes and
107 edges, and yellow has 60 nodes and 689 edges. The size
and color of each node illustrate the degree value in which
red and blue colors indicate the higher and lower degree,
respectively. The chosen modules were under scrutiny in
terms of gene ontology and pathway enrichment. The most
related modules to the infection with influenza were identi-
fied as mediumpurple2, skyblue, and yellow. Table 1 dem-
onstrates the genes in each module.

Differentially expressed genes
To evaluate which genes in each module probably af-
fected the pathogenesis routes after infection by influ-
enza virus, 719 differentially expressed genes were
found between the normal and infected subjects. In
the next step, the chosen modules were explored to
find which DEGs were involved in them. The results
disclosed the presence of RPS27A, CEP152, TPT1,
UBA52 in the skyblue module, and EIF2AK2,
C19orf66, PML, PARP12, TRIM22, CMPK2, SP100,
SP110, TRIM21, CHMP5, IFI44L, IFIT5, FAM46A,
ANKFY1, IFIT1, LAMP3, TNFSF10, TNFSF13B, OAS2,
PLSCR1, LGALS9, UBE2L6, ADAR, RTP4, IFIT2,
IFI35, IFI16, HERC5, STAT2, OAS3, RSAD2, OAS1,
MX1, IRF7, SAMD9L, DDX60, DDX58, HELZ2, IFIH1,
TDRD7, USP18, SAMD9, EPSTI1, ZNFX1, FBXO6,
DHX58, TRAFD1, PARP9, TRIM25, ZBP1, OASL,
PHF11, TRIM5, IFI44, ISG15, MX2, and IFIT3 in the
yellow module.

Gene ontology enrichment
To explore the biological relationship of the genes in
each module, the gene ontology (GO) enrichment ana-
lysis was performed. The genes of mediumpurple2
module were enriched in different immune systems,
neutrophil and leukocyte degranulation, antimicrobial
humoral response, and defense response. The most re-
lated terms to the viral infection and immune system
were specified from genes of yellow module which con-
tains defense response to virus, innate immune re-
sponse, defense response to other organism, response
to type I interferon, response to cytokine, regulation of
viral life cycle, immune response, viral process, negative
regulation of viral life cycle, regulation of viral process,
negative regulation of viral process, regulation of innate
immune response, cellular response to virus, regulation
of defense response to virus, negative regulation of viral
release from host cell, and positive regulation of im-
mune system process. As mentioned above, the genes
in the mediumpurple2 and yellow modules are acti-
vated due to viral infection and the immune system
provides defense against pathogenic agent. In the sky-
blue module, various protein targeting and localization
such as co-translational protein targeting to membrane,
protein targeting to ER, protein localization to endo-
plasmic reticulum were highlighted. Viruses usually use
the complex membrane network existing in the host
cell such as endoplasmic reticulum (ER) membrane to
entry, replication, and assembly. Therefore, the advent
of this module was expected.

Fig. 3 The cluster dendrogram of co-expression network modules. The red line reveals the cut-off of data filtering

Zarei Ghobadi et al. Virology Journal          (2019) 16:124 Page 4 of 10



Fig. 4 (a) Heatmap plot of the identified modules. Each row and column is in accordance with one module, in which red and blue shows the
positive correlation and negative correlations, respectively. (b) Dendrogram of genes clustered based on a dissimilarity measure (1-TOM) with
assigned module colors. The colored rows show the module membership obtained by the dynamic tree cut method and after merging modules
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Pathway enrichment analysis
To evaluate the pathway enrichment analysis, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reac-
tome Pathway Database were explored. The immune path-
ways, Neutrophil degranulation, Antimicrobial peptides,
and Defensins were enriched by genes in the mediumpur-
ple4. This module contains genes which involved in im-
mune response system and have antimicrobial activity.
The genes pertaining the skyblue module were

enriched in Axon guidance, signaling by NOTCH2, In-
fectious disease, Influenza Infection, Influenza Life
Cycle, Influenza Viral RNA Transcription and Replica-
tion, Viral mRNA Translation, and rRNA processing.
This module contains genes which their roles have
been specified in the influenza infection pathways.
Notch signaling involves several functions of cellular
differentiation, cell fate, and cell survival. Viruses use
several mechanisms to escape innate immune antiviral
responses and cause cell survival. The downregulation
of CREB1, RPS27A, and UBA52 in this pathway show
the immune system domination.
Eventually, the genes grouped in yellow module were

enriched in the viral and immune pathways including
Influenza A, RIG-I-like receptor signaling pathway,
NOD-like receptor signaling pathway, Herpes simplex
infection, Cytosolic sensors of pathogen-associated
DNA, Immune System, Cytokine Signaling in Immune
system, Interferon Signaling, and Antiviral mechanism
by IFN-stimulated genes. The RIG-I-like receptors ac-
tivate innate immunity and inflammation after dis-
cernment viral RNA ligands [16]. RIG-I is required for
type I IFN production in response to influenza. One of
the cellular defense mechanism is performed by recep-
tors that check uncommon RNA and DNA resulted
from viral infection in the cytosol. It causes the limita-
tion in the virus replication and activation of antiviral
immunity process [17].

Discussion
In the present study, three PPI network were identified
based on the WGCNA which are significantly related to
the pediatric influenza infection. Functional analysis re-
vealed that the genes in the mediumpurple2 module im-
plicate in the immune responses through different
routes, skyblue module in the protein targeting, and the
yellow module in the defense and immune responses to
virus. Moreover, the analysis of differentially expressed
genes revealed 719 DEGs between the normal and in-
fected subjects. Further analysis showed that most mem-
bers of the yellow and some genes in the skyblue
modules were among identified DEGs, so these modules
were more discussed.
Children who did not experience previous exposures

to influenza viruses are more vulnerable against infec-
tion and shed larger number of virus particles for a long
time [18]. Moreover, the function of immune system
may be different from adult-infected subjects. The initial
defense and adaptive immune responses against viral in-
fection are performed by type I IFNs (IFN-α/β) such as
RTP4, GBP1, OAS1, IFI27, and IF44L [19]. They induce
the IFN-stimulated genes (ISGs) through activation of
the Janus kinase–signal transducer and activator of tran-
scription pathway [20]. The influenza A viruses hinder
type I IFN signaling via induction of the suppressor of
cytokine signaling-3 (SOCS-3) protein [21]. As a result,
the expression level of SP110, OAS1, and IRF-1, which
are IFN-induced genes, increases.
ISG15 has been recognized as an activator of NK cells

and a driver of IFN-g secretion [22]. It has common
properties with other ubiquitin-like proteins (UBLs);
however, its function is influenced by the innate immun-
ity signaling pathways. The increase in the expression of
ISG15 is found after type I interferon stimulation and
viral infection. Similar to type I interferons, ISG15 in-
volves in the disease tolerance against the influenza A

Fig. 5 The PPINs of (a) mediumpurple2 (b) skyblue, and (c) yellow modules. The node size and color represent the degree level so that the
higher degree is specified by the red color and bigger size

Zarei Ghobadi et al. Virology Journal          (2019) 16:124 Page 6 of 10



Table 1 The genes involved in each module and identified DEGs.

Modules Genes

mediumpurple2 ELANE, DEFA3, PRTN3, DEFA1, DEFA1B, MPO, DEFA4, BPI,
CAMP, RNASE3, LTF, LCN2, CEL, GLE1, CTSG, PGLYRP1,
MS4A3, OLR1

skyblue RPS25, HBB, RPS27A, RPS27, RPLP2, RPS29, UBA52, RPS16,
RPL41, UBA6, EEF1A1, TPT1, USP1, TRIM41, HTR2A, NRAS,
CDKN1B, B2M, ACTB, TMA7, MBNL1, CREB1, H3F3A,
DNM1L, CEP152, C14orf2, CDC5L, OAZ1, HBA1, RPS12,
F2R, VAMP4, ORC6, SEC24B, LILRB3, EED, CLASRP, TUBD1,
SUPT3H, KIAA0907, ROCK2

yellow ISG15, OAS1, MX1, DDX58, IFIT1, RSAD2, IFIT3, IRF7, IFIT2,
OAS2, IFI35, UBE2L6, MX2, SP100, HERC5, TRIM22, TRIM25,
EIF2AK2, OASL, ADAR, STAT2, TRIM21, TRIM5, PML, IFIH1,
CMPK2, IFI44, FBXO6, ZBP1, IFI44L, DDX60, OAS3, IFIT5,
SAMD9, SAMD9L, DHX58, RTP4, PARP12, SP110, PLSCR1,
HELZ2, AZI2, IFI16, PARP9, TNFSF10, TDRD7, PHF11,
TNFSF13B, EPSTI1, ANKFY1, ZNFX1, LGALS9, FAM46A,
USP18, NT5C3, NMI, TRAFD1, C19orf66, CHMP5, LAMP3

DEGs (between normal and infected subjects) OTOF, IFI44L, XAF1, IFI6, EPSTI1, IFI44, SAMD9L, EIF2AK2,
IFI35, OAS3, HESX1, OASL, STAT1, ISG15, MX1, DDX60,
PARP9, RNF213, IFITM3, LY6E, HELZ2, FBXO18, IRF7,
ADAR, RSAD2, MOV10, IFIH1, IFIT3, STAT2, FBXO6,
SAMD9, SCO2, CMPK2, NEXN, H1F0, TNK2, C2, OAS2,
MYOF, SP100, DHX58, CMTR1, RTP4, PARP10, SHISA5,
SLC26A8, IFIT1, SPATS2L, OAS1, RNF31, GPR84, RPA4,
LOC100419583, TAP1, PML, SLC24A4, IFITM1, LGALS3BP,
UBE2L6, FCER1A, TOMM7, MASTL, MS4A4A, RPL13P5,
SSH1, REC8, MEF2A, BST2, PHF11, ABCD1, MX2, JAK2,
IL15RA, SP110, PARP12, DEFB1, SLC1A3, CCR3, BMX,
TAPBP, LENG8, PLSCR1, HERC5, HIST2H2AA3, TRIM5,
IRF9, PARP14, SERPING1, BATF2, TOR1B, STAB1, RTN2,
PNKD, LAP3, IL37, STRADA, N4BP1, NR2C2, EEF1B2,
CD1C, RN7SK, CLEC5A, GBA, LYG1, HP, GRN, CC2D2B,
FCGR1B, CARD16, NCOA7, ZBP1, EPB41L3, IFI27, TRIM22,
ARHGEF11, KIAA1958, MARK3, C1QC, TRIM25, MT1G,
RPL7, TMPPE, MT2A, HIST2H2AC, ADRA1D, TDRD7,
ZNFX1, LTB4R, ARG1, LDLR, CAPN3, SLC30A1, BRSK1,
GPD2, CUX1, TYMP, AGRN, MAFB, RPL14, ZNF839,
RPL23, IFIT5, SUSD1, FXYD6, ECE1, TRAFD1, EIF3L,
RIMBP3, RPL5, AXL, DNASE2, NT5C3A, CNIH1, RGL1,
SUOX, LGALS9, YEATS2, MICB, MTHFD2, EIF3F, HLA-DRA,
NELL1, DTX3L, TRIM14, ANKRD22, HOOK3, IL1RN, PIWIL4,
TMEM51, CAPN2, PRAM1, TRIM6, TCTN1, SPPL2A, MTF1,
RPL37A, FCGR1A, NTNG2, AIM2, CTSL, GORASP1, CCR1,
C3AR1, ATP8B4, EEF1G, ZCCHC2, REXO1, SLC9A1,
SOCS3, RPS27A, HTR3A, RAB27A, UBA7, PAQR6, MMP9,
ZNF341, TAOK2, CEP152, EXOG, FLVCR2, CTGF, HIST1H2BD,
TRIM38, MAP 3K7CL, CDC25C, SLC16A6, PAG1, HGD,
VDR, TMEM62, DDX58 RPL4 TIAF1 ANKFY1 ADAM9
RPL23AP32 MT1A ADAP2 FBL FOXD4L1 IFIT2 ATF3
RPS9 TCN2 MAFG MDM2 OLIG3 CHMP5 LMNB1 DPH5
AGFG1 RIPK3 LGALS9C IFI16 MB21D1 MERTK SIGLEC16
CKAP4 DPRXP4 BAZ1A DISC1 SCARB2 CDKN1A TMEM110
WARS TXN APOL2 SNX20 GPR155 CRTAP TXNDC12
RPL31 TRIM21 EIF4G3 TET2 CTSD CXCR2P1 FFAR3
INPP4A RHOT1 C12orf57 LGALS8 MED15 SRGAP2
RPL3 ATL3 SLC9A8 TMOD3 GYG1 HVCN1 ASGR2
FAM209B GCH1 OGFR NELL2 SLC27A3 STBD1 NBEAL2
NDST1 TRIM69 RNF19A CD36 VNN1 CEPT1 LHX6
SLC22A18 TBC1D2 HIST2H2AB ITIH4 GLS PTP4A1
MYD88 RPL13A RPS14 PLEC UGGT2 RBM43 GBP1
SYT17 FAM46A SORT1 ADAMTSL4 RPL23AP64 USP18
ATP11C C1QB ARSA EXT1 MR1 OPLAH RPS3 BCL2L11
HK3 LOXL3 MCMBP WWP2 CD177 MCEMP1 TRPM4
SLC6A12 ABCC10 RPL21 SLITRK4 CALML4 STX16 B4GALT5
ARID3A VAMP5 DNAJC5 YIPF1 DIAPH
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virus infection. Indeed, ISG15 conjugation of cellular
target proteins such as Mx1 and Mx2 is needed for the
antiviral activities. Moreover, ISG15 conjugation of a
viral protein blocks some indispensable functions [23].
HERC5 is another IFN-induced gene that mediates

ISGylation of protein targets. It is induced by Influenza
infection and elevates ISGylation as an ISG15 E3 ligase
[20, 24, 25]. It also functions as a critical antiviral pro-
tein against Influenza A virus by restricting IAV-NS1.
Samd9l is a Sam domain containing protein which has

important roles during virus infection and innate immun-
ity [26]. The expression of Samd9l is increased by type I
interferon and its role in the control of influenza virus in-
fection and also pathogenesis has been proposed [27].
In particular, we also identified the C19orf66 gene

which previously reported as an IFN-induced transcript
that suppresses dengue virus [28]. C19orf66 named as
RyDEN can constitute a complex with the indispensable
cellular mRNA binding proteins, PABPC1 and LARP1,
for the efficient replication of DENV. Moreover, it was
proposed that C19orf66 is a new antiviral effector which
has a prominent role in the inhibition of virus replica-
tion. The increase in the expression of C19orf66 was ac-
companied with up-regulation of IFIT genes [29, 30]
which can inhibit the translation initiation, bind and se-
quester uncapped viral RNA, and viral protein in the
cytoplasm.
Another substantial gene found in this study is HELZ2

(Helicase With Zinc Finger 2) which is an IFN stimu-
lated gene and immediate early gene (IEG). It was re-
ported that the HELZ2 knockout in mice causes the
enhancement of the dengue virus infectivity. Also, the
mediatory of HELZ2 in the IFN antiviral response was
disclosed, so that the up-regulation of the HELZ2 tran-
scriptional and protein in the nucleus, and activation of
a transcriptional program were involved. Moreover, IEGs
were introduced as the biomarkers due to their influence
on the host response to viral infections [31].
EPSTI1 is an IL-28A-induced ISGs which was identi-

fied as an anti-HCV. Also, the knockdown of EPSTI1
caused the enhancement of virus. It was stated that
EPSTI1 may actuate PKR promoter and induce IFN-β,
IFIT1, OAS1, and RNase L, which are PKR-dependent
genes and responsible for the EPSTI1-mediated antiviral
activity. Therefore, EPSTI1 was presented as a proper
therapeutic target to treat HCV infection [32]. In this
study, the expression level of EPSTI1 has increased in
the influenza-infected subjects versus normal cases. The
up-regulation of the IFIT proteins especially IFIT1 and
also OAS1 may induce the overexpression of EPSTI1, so
it can be considered as the biomarker or a target for de-
signing a drug.
PHF11 is a transcriptional co-activator of IL2 and

IFNG which its knock-down causes up-regulation of the

pro-inflammatory chemokine IL-8, therefore the contri-
bution of PHF11 in epidermal recovery was proposed
[33]. The overexpression of PHF11 due to the infection
with Japanese encephalitis virus [34], avian influenza A
virus [35], and Epstein-Barr Virus [36] were reported
previously. Similarly, the expression of PHF11 was in-
creased after influenza infection which can confirm its
role in the diminution of pro-inflammatory chemokine
and increase the IFNG due to the infection.
IRF7 which is overexpressed due to the influenza in-

fection regulates the antiviral response. The viral infec-
tion causes the phosphorylation and translocation of
IRF7 to the nucleus and as a result the induction of ex-
pression of type-I interferons which in turn activates
IRF7 transcription through STAT2 [37, 38].
EIF2AK2 is the interferon-induced dsRNA-dependent

protein kinase which has a prominent role in the innate im-
mune response to viral infection, apoptosis, cell prolifera-
tion, and differentiation. MX1 as a member MxA protein
belongs to the GTPase family and suppresses the influenza
virus replication via targeting the viral nucleoprotein [39].
OAS proteins family are IFN-stimulated proteins which
have prominent roles in the innate immune responses.
They also catalyze the synthesis of 2 ′ -5 ′ -linked oligoade-
nylates, which in turn cause the activation of RNAse L and
degradation of viral and cellular RNAs [40]. ZBP1 has been
recently identified as an innate immune sensor of influenza
virus. It regulates NLRP3 inflammasome activation and in-
duces the apoptosis, necroptosis, and pyroptosis in the
influenza-infected cells [41].
The genes involved in the mediumpurple4 were enriched

in the immune pathways and neutrophil degranulation.
Neutrophils are granulocytes that comprise innate phago-
cytic cells packed with granules containing proteins with
antibacterial function [42, 43]. In this study, we identified
proteins belonging to three types of neutrophil granules: pri-
mary (azurophilic: ELANE, MPO, PRTN3, BPI), secondary
(specific: LTF, DEFA4, DEFA1, DEFA1B), and tertiary (gela-
tinase: PGLYRP1) granules. These genes were upregulated
in the influenza-infected subjects. The neutrophil granule
proteins have antibacterial function and have key roles in
the innate immune defense against bacteria. The up-
regulation of neutrophil granule proteins has been reported
in viral infections and RSV-stimulated neutrophils [44–46].
In the skyblue module, UBA52 and some genes be-

longing to RP family were identified in consistent with
the required interaction between UBA52 and RP family
for virus replication. The previous study revealed that
the knockdown of UBA52 in the chicken cells causes the
diminution of the progeny viral titer denoting the sub-
stantial function of UBA52 in the H5N1 influenza A
virus infection [47]. However, UBA52 and most of the
RP genes were down-regulated in this study after the in-
fluenza infection with respect to the normal cases. It can
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be due to the overexpression of genes involved in the
defense response to virus and innate immune response
including EIF2AK2, C19ORF66, PML, TRIM22, IFI44L,
IFIT5, IFIT1, OAS2, PLSCR1, ADAR, RTP4, IFIT2, IFI16,
HERC5, STAT2, OAS3, RSAD2, OAS1, MX1, IRF7,
DDX60, DDX58, IFIH1, DHX58, PARP9, TRIM25, OASL,
TRIM5, ISG15, MX2, and IFIT3. The innate immune
system responses to the entry Influenza virus by mem-
bers of Toll-like receptors, and RIG-I and the NOD-like
receptor family. Finally, the inter-individual variation in
expression of the identified differentially expressed genes
was low. It is found that inter-individual variation in
gene expression profiles is related to sex, age, and the
time of sample collection [48, 49]. Moreover, differences
in genotype, epigenetic or environmental factors can be
cause of the intrinsic differences in expression patterns.

Conclusions
Overall, the systems virology approach based on the ap-
plication of WGCNA helped us to find three modules of
co-expressed genes related to pediatric influenza. More-
over, SP110, HERC5, SAMD9L, RTP4, C19orf66, HELZ2,
EPSTI1, and PHF11 were remarkably co-expressed with
other known genes which were involved in innate im-
mune system and defense to virus. These genes and sub-
sequently related proteins are proposed as the candidate
biomarkers and also drug targeting. However, further
studies are required to evaluate and confirm them.
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