Pasumarthy et al. Virology Journal 2011, 8:178
http://www.virologyj.com/content/8/1/178

VIROLOGY JOURNAL

RESEARCH

Open Access

The presence of tomato leaf curl Kerala virus AC3
protein enhances viral DNA replication and
modulates virus induced gene-silencing
mechanism in tomato plants

Kalyan K Pasumarthy, Sunil K Mukherjee and Nirupam R Choudhury”

Abstract

Background: Geminiviruses encode few viral proteins. Most of the geminiviral proteins are multifunctional and
influence various host cellular processes for the successful viral infection. Though few viral proteins like AC1 and
AC2 are well characterized for their multiple functions, role of AC3 in the successful viral infection has not been
investigated in detail.

Results: We performed phage display analysis with the purified recombinant AC3 protein with Maltose Binding
Protein as fusion tag (MBP-AC3). Putative AC3 interacting peptides identified through phage display were observed
to be homologous to peptides of proteins from various metabolisms. We grouped these putative AC3 interacting
peptides according to the known metabolic function of the homologous peptide containing proteins. In order to
check if AC3 influences any of these particular metabolic pathways, we designed vectors for assaying DNA
replication and virus induced gene-silencing of host gene PCNA. Investigation with these vectors indicated that
AC3 enhances viral replication in the host plant tomato. In the PCNA gene-silencing experiment, we observed that
the presence of functional AC3 ORF strongly manifested the stunted phenotype associated with the virus induced

gene-silencing of PCNA in tomato plants.

Conclusions: Through the phage display analysis proteins from various metabolic pathways were identified as
putative AC3 interacting proteins. By utilizing the vectors developed, we could analyze the role of AC3 in viral DNA
replication and host gene-silencing. Our studies indicate that AC3 is also a multifunctional protein.

Background

Geminiviruses are circular ssDNA containing plant
viruses with a genome size of ~ 2.7 kb [1]. Gemini-
viruses have an atypical genomic content. They are
either monopartite with a single genomic component
[2], monopartite with a satellite DNA that is around half
the size of the genome [3] or bipartite with two genomic
components of ~2.7 kb encoding different genes on
both components [4]. Monopartite viruses encode all
the genes required for successful infection, replication
and movement on the single genome. In case of mono-
partite viruses with satellite DNA and bipartite viruses,
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the DNA A contains the genes necessary for replication
while the cognate genome component encodes genes for
infectivity and movement within the plants [3,5].

Whiteflies and leaf-hoppers are the vectors that trans-
mit geminiviruses from one plant to other. These
viruses replicate their DNA via rolling circle replication
mechanism by utilizing the host plant cellular machinery
[5-7]. Geminiviral proteins expressed after a successful
viral infection in a plant cell induce the expression of
host cell replication machinery from the differentiated
plant cells [8-11]. The induced replication machinery is
then diverted on to the viral DNA through the protein-
protein interactions by the viral proteins for the produc-
tive replication [12-17].

Geminiviral proteins are often multi-functional in nat-
ure. Complementary strand of the geminiviruses encode
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four ORFs, viz., AC1, AC2, AC3 and AC4. Replication
initiator protein (Rep/AC1/C1) is an essential viral pro-
tein for replication [18]. It binds the viral DNA in a
sequence specific manner by recognizing the iterons at
the origin of replication on the viral DNA [19-22]. Rep
functions as a site-specific endonuclease by recognizing
the hairpin loop structure and sequence at the viral ori-
gin of replication to initiate the viral replication. It also
functions as a ligase to terminate the replication of viral
DNA [23-27]. Rep has the unique ability to act as a
repressor of its own transcription [28,29] and thereby
regulates the expression of down-stream AC2 and AC3
genes [30]. Rep is also an ATPase [26,31,32] and a heli-
case [32,33]. In addition, it interacts with various host
proteins [9,13-16,34,35] and viral proteins [36,37]. Simi-
larly, the C2/AC2 protein of geminiviruses can bind to
the DNA [38] and control the coat protein gene expres-
sion [39,40] either by activation or derepression [41].
AC2 is also known for its ability to suppress post-tran-
scriptional gene-silencing mechanism [42-44] inside the
host plant by inhibiting adenosine kinase [45,46] or by
reducing genome wide cytosine methylation [47]. AC2
also inhibits SNF1 kinase to reduce the basal defense
[48]. Likewise, AC4/C4 protein from geminiviruses was
also shown to have multiple functions with roles in
post-transcriptional gene-silencing [49,50], movement of
virus inside the host cells [51,52], cell division [53], tran-
scription [54] and interacts with host protein AtSKeta -
a protein from brassinosteroid signaling pathway [55].

Such a battery of multiple functions in viral proteins is
most of the time brought out by their ability to form
hetero-oligomer or homo-oligomer. In case of the gemi-
niviral proteins, Rep/AC1 is able to bind, nick and ligate
DNA as a monomer. However, its helicase activity is
strictly dependent on its ability to form a higher order
homo-oligomer [32,33]. One possible way by which Rep
is able to induce the replication machinery is through
formation of a hetero-oligomer by interacting with reti-
noblastoma protein [9,56]. Similarly, AC2 protein is cap-
able of interacting with ADK and suppresses local gene-
silencing as a monomer whereas it can transactivate the
virion sense strand genes as an oligomer only [57].
These observations indicate that the ability to form oli-
gomers and to interact with other host proteins confers
unique properties to the viral proteins which they can-
not perform as monomers.

AC3 protein was shown to interact with viral protein
AC1 [36,58]. It was also shown to interact with host
proteins like pRBR [12], PCNA [14] and SINAC1 [59].
AC3 was shown to enhance viral DNA replication by an
unknown mechanism [60-65]. Preliminary studies on
AC3 oligomerization suggested that AC3 also forms a
higher order oligomer like AC1 [58,66]. Together, these
hetero and homo-oligomerization studies observed in
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case of AC3 suggest that it might also have multiple
functions in addition to its role in replication which is
unexplored as yet. In this study we tried to address the
roles of Tomato leaf curl Kerala virus-[India:Kerala
11:2005] (DQ85263) AC3 protein in the viral life cycle.
We have performed an exhaustive phage display analysis
to find out the interacting peptides of AC3 protein.
These interacting peptides were observed to be homolo-
gous to proteins from various metabolisms indicating
the likely role of AC3 in these cellular pathways. Since
replication of viral DNA and gene-silencing are the two
important phenomena that determine the progress of
viral infection, we have chosen to investigate the role of
AC3 in these biological processes. We have designed
vectors to analyze the role of AC3 in replication and
virus induced gene-silencing in both yeast and plants.

Results and Discussion

Phage display analysis for AC3 interacting peptides

AC3 protein of geminiviruses is a highly hydrophobic
protein containing around 62% aromatic amino acids
[58]. This property poses difficulty in isolating the AC3
protein (with small tags or without tag) in the soluble
fraction in sufficient quantities from bacterial cells [67].
Although it is possible to express the TGMV-AC3 pro-
tein in soluble fraction in insect cell lines but purifica-
tion in high quantities becomes uneconomical [36].
Bioinformatic analysis indicated that AC3 proteins lack
similarity to any known enzymatic motifs [58,68]. All
these factors hindered the exploration of the mechanis-
tic role of AC3 on enhancing viral DNA replication and
the existence of any other role in viral infection. In
order to find the AC3 interacting peptides which could
indirectly point towards the likely role of AC3 in other
cellular processes, we have employed phage display
analysis.

Since AC3 protein could not be isolated in the soluble
fraction without the MBP fusion tag, we have performed
the phage display analysis with MBP-AC3, using MBP
as a control. The unique peptides that were observed
with the MBP-AC3 but not with MBP were considered
for further analysis (Tables 1,2,3, &4, Additional file 1a).
Homology search of these peptides against Arabidopsis
thaliana protein database was performed to identify the
putative AC3 interacting proteins. We noticed two pro-
teins, namely pRBR and GRIK1/GRIK2 proteins (Table
3), which are well known to interact with geminiviral
protein Rep [35,69]. pRBR interacts with AC3 also [35].
The peptide regions interacting with both these proteins
are four residues in length. Thus we included the list of
proteins with homology of at least four residues in
length in shortlisting the putative interacting proteins
along with their E-values. We have taken the E-value of
pRBR as the threshold value for short listing various
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Table 1 Putative interacting proteins of ToLCKeV AC3 from RNAi pathway
Peptide Protein Accession Number Start Interacting Sequence in E-
Peptide(s) value
AVGGQTPIRAKI Repressor of Silencing 1 (ROS1) Q95JQ6.2 79 GQTPI 517
NAISWFPMHLAH Suppressor of gene silencing 3 NP_197747.1 237 AISWFPMHPLLAH 214
(SGS3)
YALKHLPESTIP Hua Enhancer 1 (HENT) AAL05056.1 704 YALKHIRES 20
AYSPISTVTQPY (HEN4) AAO37828.1 403 AYGRPIETMTQ 517
AAO37829.1 858 TVTRPY 517
APGYARLPSLMS Dicer-like 1 (DCL1) NP_171612.1 687 LPSL 7294
Q9SP32.2 948 PGTAR 42568
NP_171612.1 1329 RLPSIM 287
SMTHLYTDLWQP Dicer-like 2 (DCL2) NP_001078101.1 NP_566199.4 29 HQYTDL 694
WHKHIPSPRASS
246 IPSPKRAS 214
1224 HKHI 1677
1235 HKHI 1677
NVHIRQPLGASS Argonautel (AGOT1), AGO6 AAB91987.1 47 NVSVRQP 932
NISSIRPTLVEV AGO1 NP_175274.1 129 VSS-QPTLSEV 1603
366 SIRPT 517
649 SARPEQVE 54615
SMTHLYTDLWQP AGO2 NP_174413.2 910 THYYT-LW 694
WHKHIPSPRASS AGO?7, Pinhead like protein, NP_177103.1 AAG60096.1 706 SMTHLY 694
LLHAPYDHSVSP Zippy AC073178_7
148 WNKKIPTP 386
14 KHIPS 386
25 LLHKPYHHHV 214
75 HNSLPPPPP 7294
80 PPPPPHL 1677
91 PPLPPLL 160
98 PLPP 3020
184 YNVEISP 137978
293 PLPPE 2250

The details of phage display identified peptides, proteins with the homologous regions, accession number of the proteins, starting co-ordinate of the matching
region in the protein sequence, matching sequence in the phage peptide and the E-value of the corresponding match are shown. Residues in bold are identical
(or similar in few cases) to the residues in the protein sequence. Mismatches to the protein sequence are shown in reduced font size.

Table 2 List of putative ToLCKeV AC3 interacting DNA and histone modifying enzymes

Peptide Protein Accession Number Start Interacting Sequence in E-
Peptide(s) value

IQSGTPHPPLRS H3-K9 Methyltransferase NP_565056.1 87 PPLRS 517
26 PLRS 5436

AMYYPLWPSLVY Histone acetyl transferase NP_173115.1 562 QWPS 890

HLPRHHWQWPSR

986 AMYY 517

LEAPRPTPAVPM Variant in methylation 2 (VIM2), VIM3, NP_176091.2 NP_176779.2 448 PRPLPNVP 517

VIM4, VIM5 NP_176778.1

HILSPSGSPRMS MOM NP_563806.1 394 IPSPSG 9787
1588 PSGS 13133

1821 SPSGAPR 119

GSAVASTLPLGQ Decreased methylation to DNA (METT) NP_199727.1 522 AVASTL 287
1181 STLPLPGQ 287

The details of phage display identified peptides, proteins with the homologous regions, accession number of the proteins, starting co-ordinate of the matching
region in the protein sequence, matching sequence in the phage peptide and the E-value of the corresponding match are shown. Residues in bold are identical
(or similar in few cases) to the residues in the protein sequence. Mismatches to the protein sequence are shown in reduced font size.



Pasumarthy et al. Virology Journal 2011, 8:178
http://www.virologyj.com/content/8/1/178

Table 3 List of putative ToLCKeV AC3 interacting proteins from DNA recombination and cell cycle pathway
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Peptide Protein Accession Start Interacting Sequence in E-
Number Peptide(s) value
TLTWHTKTPVRP HFKHQHSYARPP Replication protein A1(RPAT) BAB09262.1 211 WWKIIRFYP 287
AYSPISTVTQPY SHWWARVPFYPP
AAC95163.1 219 PISTV 694
NP_565571.1 273 HFKH 1250
AAD48944.1 285 WHTKMWPV 215
DAMIMKKHWHRF Geminivirus Rep interacting kinase 1 NP_200863.2 164 MIMK 517
(GRIK1), GRIK2 NP_566876.3
FPKAFHHHKIYK Retinoblastoma like protein (pRBR) BAB01449.1 317 HKIY 1250
SHEIYVGSDGFR Anti silencing function 1b (ASF 1b), NP_198627.1 43 IYVGS 517
ASF1a BAC54103.1
FHKHSPRSPIFI YALKHLPESTIP LLHAPYDHSVSP RecQ Helicase, RecQ sim, RecQ4A BAE98731.1 678 FHKSSPNTLAARSAI 287
BAE98731.1 326 LKHLPSII 214
NP_568499.1 697 HAPYE 932
NP_172562.2 483 LTYPLP 694
TNVPNPLOPNPR GLLHHKHHRSPY Werner Helicase - interacting protein ABH03541.1 254 NPLKPN 694
ABHO03541.1 501 LLHHK 287
LITNNPGRLPPQ RAD1 AAG42948.1 436 ITNNP 287
RAD50 NP_565733.1 572 GRLPPE 386
QNNLDYIGLYAR TTNIYENTPAEV RAD5 NP_197667.1 42 NIIFDTP 694
NP_197667.1 606 QNNLEDLY 663
SHEIYWGSDGFR CPLPYPLCLPHG RAD4 NP_197166.2 556 SHEIY 160
NP_197166.2 655 PLCLP 214
LEAPRPTPAVPM RAD23-3 NP_974211.1 119 APRPTPA 517
NP_186903.1 129 APAPTRPPPPA 31725
LITNNPGRLPPQ SHEIYVGSDGFR RAD50 BAD94628.1 306 KEWRTHFQQR 160
FHKEWRTHFQQR
BAD94628.1 512 HEIY 932
NP_565733.1 572 GRLPPE 386

The details of phage display identified peptides, proteins with the homologous regions, accession number of the proteins, starting co-ordinate of the matching
region in the protein sequence, matching sequence in the phage peptide and the E-value of the corresponding match are shown. Residues in bold are identical
(or similar in few cases) to the residues in the protein sequence. Mismatches to the protein sequence are shown in reduced font size.

Table 4 List of putative ToLCKeV AC3 interacting DNA and RNA polymerases

Peptide Protein Accession Number Start Interacting Sequence in E-
Peptide(s) value

WHQSWWAARLGQ RNA dependant RNA polymerase (RDR1), AAN64409.1 18 AARLGQ 160

RDR2 NP_192851.1

LSPLYPQLLGLA RDRP3, RDRP5 NP_179581.2 933 LYPQALAL 287

YPTSNIIPSIWS RDR6 NP_190519.1 55 YPNFEIADTSNI-PSI 66
1033 DLIPEAW 57117

HISPISAYPWVS DNA pol y2 NP_175498.2 17 HLSPSSS-WVS 694
HFKHQHSYARPP DNA pol & subunit AAC77870.1 1855 FMDQHNYA 694
LITNNPGRLPPQ DNA pol o subunit AAG52305.1 115 TNKSQRLHP 23644

588 NPGRL 517

WHKHPHAVFNAR DNA pol ¢ catalytic subunit AAG52299.1 1460 HRIFNAR 932

YALKHLPESTIP DNA pol | NP_1725222 247 LKHLP 386

GPLLVLNSHSFD DNA pol & small subunit NP_181742.2 31 NPHSFD 386

The details of phage display identified peptides, proteins with the homologous regions, accession number of the proteins, starting co-ordinate of the matching
region in the protein sequence, matching sequence in the phage peptide and the E-value of the corresponding match are shown. Residues in bold are identical
(or similar in few cases) to the residues in the protein sequence. Mismatches to the protein sequence are shown in reduced font size.
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proteins. Further, we have included only those proteins
with at least two or more hits from the same peptide or
from different peptides identified in the phage display.
Those proteins with an E-value less than that of GRIK1
were also included even if they have only one hit from
the phage peptide (Tables 1,2,3, &4).

The proteins with at least two unique hits from differ-
ent peptides and each with a minimum identity/similar-
ity of five amino acids continuously or with one
mismatch or gap were considered as putative interacting
proteins. These interacting proteins were observed to
belong to various metabolic and cellular processes, viz.,
transcription activation, cell cycle, kinases, replication,
RNAI, histone and DNA modification (Tables 1,2,3, &4
and Additional file 1b). Identification of proteins from
various cellular processes suggests that AC3 is likely to
play role in these cellular processes. Since these putative
interactions are only indicative, assays to investigate the
impact of AC3 in these cellular processes is necessary
for confirmation of its role.

Construction of yeast vectors for analyzing the viral DNA

replication

Budding yeast S. cerevisiae is known to support the
replication of animal and plant RNA and DNA viruses
including geminiviruses in the absence of complement-
ing yeast autonomously replicating sequence (ARS) as
an episome [70-72]. We have developed a vector system
on the similar line of yeast vector developed for
MYMIV [72]. The yeast vector YCp50 was modified to
contain viral DNA spanning the entire viral origin of
DNA replication (also called common region - CR or
intergenic region - IR) region to AC3 (i.e., CR-AC3)
replacing the ARS sequence (YCp-CRACS3) (Figure 1).
This CR-AC3 region contains the complementary strand
DNA with complete viral origin of DNA replication and
viral ORFs AC1, AC2, AC3 and AC4. Another vector
(YCp-CRAC3™) was constructed with a mutation
(M1T) in the AC3 ORF that corresponds to the nucleo-
tide change ATG to ACG (Figure 2). Such mutation
would result only in a silent mutation in the overlapping
AC2 ORF. We expected that this mutation would not
produce any intact or N’ terminal truncated AC3 pro-
tein since the second and only other methionine in AC3
protein is located at the C’ terminus 133" amino acid
position. Both the vectors YCp-CRAC3, YCp-CRAC3M
and the control YCp50 plasmids were transformed into
yeast separately and the colony growth was monitored
on selection medium (Ura’). Yeast transformed with
YCp-CRAC3 and YCp-CRAC3M exhibited much delayed
growth phenotype (0.25-0.5 mm sized colonies in 5
days) in comparison to wild type plasmid YCp50 (3-4
mm size, Additional file 2). This kind of slow growth
continued even after 10 days of incubation at standard
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conditions. This contrasted with the observation in case
of MYMIV where the yeast was growing normally [72].
In our case, the delayed growth may be due to the pos-
sible toxicity of the viral proteins expressing in yeast.
With this view further analyses were done in planta.

Construction of plant vectors for analyzing the viral DNA
replication

CR-AC3 region is reported to be sufficient to support
viral replication in plants [17,73]. Since geminiviruses
replicate by rolling circle replication by nicking and reli-
gating at the viral origin of DNA replication, we con-
structed vectors with viral origin of replication (CR) in
the vector pPCAMBIA1391Z. This vector was then modi-
fied to contain CR-AC3 or CR-AC3M (AC3 mutated at
start codon, Figure 2) in the same orientation as CR to
generate pCK2 (Figure 3) and pCK2"™ plasmids respec-
tively. These vectors were used to agroinfiltrate in the
tobacco leaves and the replication was observed at 4 dpi
and 10 dpi. Time course analysis of the pCK2 and
pCK2M episome formation in tobacco plant leaves did
not show any significant down-regulation in replication
upon AC3 mutation (Data not shown). To rule out the
reversion of the mutation in the start codon, we carried
out sequencing of the episome and found that the muta-
tion was preserved. Thus, the non-significant alteration
in the replication efficiency might be due to various rea-
sons: one being the minimal role of ToLCKeV AC3 in
viral replication in planta unlike in protoplasts and leaf
discs. It is also possible that the role of AC3 in viral
replication occurs at a later stage requiring analysis of
samples beyond 10 dpi. The other reason might be the
permissiveness of the tobacco plant for the viral replica-
tion that masked the role of AC3. Such a conjecture
gets support from an observation made in case of BCTV
(California strain). When BCTV C3 was mutated, BCTV
genome replicated to almost wild-type levels in tobacco
plant whereas the replication was reduced in natural
host plant sugar beet [74].

ToLCKeV AC3 enhances viral replication in young tomato
plants

To exclude the possibility of permissiveness of viral
replication in tobacco, we performed an agroinoculation
experiment with pCK2 and pCK2M?! (with additional
mutations in AC3 ORF) in the natural host tomato.
Additional mutations in AC3 ORF corresponds to the
amino acid positions 20 and 21 which are mutated to
consecutive termination codons (Figure 2c). Since AC2
and AC3 ORFs overlap each other, we checked if these
mutations have any effect on the AC2 protein sequence.
While the mutation corresponding the 20™ amino acid
in AC3 OREF is a silent mutation in AC2 ORF, the muta-
tion in the 21°" amino acid of AC3 confers a change in
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Figure 1 Viral replicon construction in yeast. Schematic diagram representing the construction of viral replicon in yeast. YCp50 is a binary
plasmid that is capable of replication in bacteria and yeast. ARS and CEN4 sequences of the plasmid confer the ability to replicate in yeast.

Removal of ARS fragment renders the plasmid unable to replicate in yeast (YCpO'). CR-AC3 fragment of the begomovirus contains the cis-acting
sequences (origin of replication) and trans-acting viral genes (AC1, AC3) required for viral replication. Cloning of CR-AC3 of MYMIV at Hind Il site
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the overlapping AC2 (G70V) ORF. Since 70™ amino
acid of AC2 does not lie in any of the known functional
domains (C-terminal nuclear localisation signal, Zn fin-
ger motif and N’-terminus acidic transcription activation
domain) required for silencing activity or transcriptional
activation activity, we argued that such a mutation
would not affect the functions of AC2.

Examination of the relative replication levels of the
episome between pCK2 replicon and pCK2M?! replicon
was carried out at various time intervals till 15 dpi (Fig-
ure 4). Within first five days, there was no difference in

the levels of replication. However, the relative change in
replication was more pronounced at 10 dpi as the repli-
cation of the wild-type replicon (pCK2) was 3-4 folds
higher than that of AC3 mutant replicon (pCK2M?1),
The difference in the relative level of replication dimin-
ished to 1.5-2 folds at 15 dpi.

Our observation suggested that AC3 enhances replica-
tion but is not essential for replication. This is in line
with earlier observation [18]. Role of AC3 was evident
at 10-15 dpi. However, our results differed from pub-
lished reports on the level of AC3 influence on viral
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Figure 2 Mutations in ToLCKeV AC3. (a) Schematic diagram of the CR-AC3 region of the replicon constructs. The hyphenated arrows indicate
the mutations in AC3 ORF. Numbers indicate the base positions with reference to the viral genome. (b) Sequence alignment of the AC3
mutated at start codon with the wild type AC3. The mutated base is shown against the white background at base number 2 in the AC3 ORF.
Mutation was confirmed by sequencing. This mutant construct is denoted as CR-AC3". (c) Termination mutations in AC3 were located at bases
62 and 64 of the AC3 ORF (denoted as CR-AC3™?"). Details of these mutations have been explained in the text.

replication. This might be due to the differences in the
experimental design or the assay system. Earlier reports
on AC3’s role in replication were based on the analysis
by mutating AC3 after the AC2 stop codon. This
resulted in truncated AC3 with 80 amino acids in case
of TGMV AC3 and more than 100 amino acids in other
viruses [60,61,63-65,74]. In these studies it is possible
that the truncation in the AC3 protein rendered it non-
functional. It is also likely that the truncated AC3 inter-
fered with the cellular pathways involved in replication.
With its N'-terminus and middle region being intact,
AC3 could titrate various proteins that interact with
AC1 (like PCNA, pRBR, etc.). In such a case, the signal
perceived by the N’-terminus of AC3 gets abruptly ter-
minated being unable to relay the signal through a func-
tional C’-terminus, thereby affecting replication. Our
mutation strategy assured that AC3 is not expressed
since we had mutated the start codon and included two
stop codons at 20th and 21st amino acid positions. It is
possible that in complete absence of AC3, another pro-
tein or an alternate pathway might rescue the viral repli-
cation [58]. This hypothesis gets considerable support
from an experiment performed with transgenic plants.

In their work Hayes et al. [75] raised various transgenic
plants expressing DNA A ORFs and tandem repeats of
DNA B genome. Plants expressing DNA A ORFs were
crossed with transgenic plants containing DNA B as
tandem repeats (2DNA B). When DNA from two such
plants: AC1 x 2DNA B and AC1AC3 x 2DNA B were
analyzed, the difference in the replication of DNA B in
the presence and absence of AC3 was observed to be
less than 1.5 fold indicating that the replication in
planta was sustainable without AC3. Delay and ameli-
oration of symptoms and reduced systemic movement
of the virus in case of AC3 mutations observed in
planta by agroinoculation experiments [18,60,63-65,74]
suggest that AC3 has a more important role in systemic
spread. Thus, the observed reduction in DNA levels at
systemic locations is an indirect effect rather than its
direct involvement in replication. Having a multitude of
interacting partners that were discovered [12,14,59,76]
and are being discovered, large multimer forming ability
[66] that enables interaction with multiple partners indi-
cate that AC3 is an important protein with multi-func-
tional capability. Thus, further examination of its
involvement in various cellular processes is needed.
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Figure 3 Viral replicon used for in planta studies. Viral replicon was constructed with the pCAMBIA1391Z binary vector. Complete replicon
contains the region spanning from CR to AC3 (pCK2 replicon) and CR region of ToLCKeV. Presence of CR on either end in the same orientation
enables the completion of rolling circle replication. Rolling circle replication releases the episome that contains only one complete CR and
region spanning from AC1 to AC3. Red arrows indicate the nicking site of Rep protein in hairpin loop in either CRs and the black line represents
the region of the vector that forms episome. Formation of an episome can be checked by PCR amplification with the oligonucleotides indicated
by blue arrows. Internal primers were designed to amplify the DNA only from the episome under standardized PCR conditions. CR-AC3 is
replaced by CR-AC3" or CR-AC3™?! for generating pCK2™ replicon and pCK2"?" replicons. A 300 bp PCNA fragment was cloned into the MCS
region to generate pCK2Y-PCNA and pCK2"?'-PCNA.

Replicon

Actin

11

5 dpi 10 dpi 15 dpi

Figure 4 Semi-quantitative amplification of episomal DNA from wild-type and AC3 mutated replicon. Tomato plant leaves were
infiltrated with wild-type replicon (pCK2) and AC3 mutated replicon (pCK2"?") separately. DNA from the infiltrated leaves was isolated at 5, 10
and 15 days post infiltration and subjected to Dpn | restriction digestion. Equal quantities of DNA were then used to amplify episome or actin.
PCR conditions were specific to amplify only a part of replicon from the episome. Difference in the amplification of replicon in wild-type and
mutant was prominent in the 10 dpi sample (3-4 folds difference). By 15 dpi, the difference in the amplification of episome was only 1.5-2 folds.
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The phage display data indicated that various
ToLCKeV AC3 interacting peptides are homologous to
the proteins of RNAi pathway. Interestingly, we found
that few of these proteins (MOM1, MET1, DCL]I,
DCL2, AGO1, AGO2, AGO7, and HEN4) have multiple
hits from different peptide sequences identified from
phage display (Tables 1 and 2). We believed these pro-
teins to be likely interacting partners of ToLCKeV-AC3.
Hence, we investigated if AC3 could influence the RNAi
pathway(s). One way to examine the role of AC3 in
RNAI pathway is to study the silencing of an endogen-
ous gene through the virus induced gene-silencing
mechanism (VIGS) in the presence and absence of func-
tional AC3 ORE.

AC3 strongly manifests the phenotype associated with
PCNA gene-silencing

CR-AC3 region for geminiviruses has been shown to be
the minimal region required for eliciting VIGS [73].
Thus, we have utilized our pCK2 and pCK2™?! replicon
constructs to silence the endogenous gene PCNA. A 300
bp fragment of PCNA from tomato cDNA was cloned
into the replicons (Figure 3). Agrobacterium containing
one of the PCNA cloned replicons viz., pCK2-PCNA or
pCK2M21_PCNA or control vector pC-PCNA were infil-
trated into the leaves of tomato plants at 4 leaves stage.
Growth of the plants was found to be normal and indis-
tinguishable till 20 dpi. We noticed observable retarda-
tion in the growth of the pCK2-PCNA infiltrated plants
at 30 dpi. By 45 dpi, the growth of the plants was
severely stunted and was just half in length compared to
plants infiltrated with pCK2™*'-PCNA, pC-PCNA or
uninfiltrated plants (Figure 5). Growth retardation was
accompanied with reduced flowering, decreased interno-
dal distance and absence of fruits at 45 dpi, whereas the
formation of fruits and flowers were indistinguishable in
plants infiltrated with pCK2™?*'-PCNA, pC-PCNA and
plants without any infiltration (Table 5, Figure 5b-d).
Retardation in growth of pCK2-PCNA infiltrated plants
was relieved by 60 dpi which was evident by the rapid
growth in the height of the infiltrated plants (data not
shown).

PCNA gene is required for the replication of DNA. It
is expressed in meristematic tissues that rapidly divide
and grow. PCNA is absent in the mature leaves [77]. So,
silencing of endogenous PCNA would hamper the DNA
replication in the rapidly growing tissues resulting in
stunted growth - an easily recognisable phenotype
[78,79]. In our case plant growth was severely retarded
which was evident from the reduced plant height, flow-
ering and absence of fruits. Another advantage of our
VIGS construct is the absence of virion sense strand
ORFs AV1 and AV2. Absence of these proteins prevents
virion packaging and movement of virion particle. So,
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by design, our VIGS vector is movement defective and
cannot produce disease symptoms [73,80]. Thus, the
observed deformities in the plant growth are due to the
silencing of PCNA.

Growth retardation observed in our experiments in
the presence of AC3 indicates that AC3 could have
strong influence on virus induced gene-silencing of
endogenous gene PCNA in this experiment. However, it
is difficult to ascertain the exact role of AC3 in RNAI
and with which proteins it actually interacts from our
experiment in isolation.

Conclusions

In this study we have identified various ToLCKeV AC3
interacting peptides through phage display analysis. Few
of these interacting peptides were found to be homolo-
gous to proteins from replication process, RNAi path-
way, histone and DNA modifying enzymes indicating
the role of AC3 in these pathways. In order to verify if
ToLCKeV AC3 has any role in any of these metabo-
lisms, we have developed vectors to investigate its role
in replication and gene-silencing. We observed that
ToLCKeV AC3 effectively functions in the viral replica-
tion at an intermediate stage and enhances replication
in host plant tomato. In the gene-silencing mechanism,
the phenotype associated with the host gene PCNA
silencing was strongly manifested in the presence of
functional AC3 ORF. These observations indicate that
the role of AC3 extends to RNAi pathway in addition to
its role in DNA replication.

Methods

Phage Display analysis

We have used the ‘Ph.D-12 phage display library’ kit
(New England Biolabs) for analyzing the various pep-
tides that interact with AC3 protein. The protocol was
followed as per the technical bulletin of the kit. In brief,
the panning was carried out by incubating a library of
phage-displayed peptides with a plate coated with the
purified MBP-AC3 or MBP [66] in the TBST (100 mM
Tris-HCl, 150 mM NaCl, pH 7.5, 0.1% Tween20) bind-
ing buffer (1.5 x 10'" phage diluted in 1ml buffer).
Unbound phages were removed by washing with TBST.
Bound phages were eluted with elution buffer (0.2 M
Glycine-HCI, pH 2.2; 1 mg/ml BSA) and neutralized
with 1 M Tris-HCI (pH 9.1). The eluted phages were
then amplified with E. coli ER2738 bacterial strain.
Amplified phages were then subjected to two more
rounds of panning and taken through additional bind-
ing/amplification cycles to enrich the pool in favor of
binding sequences. After three rounds, individual clones
were characterized by DNA sequencing. Exclusive phage
sequences were obtained after removing the M13 phage
sequences. These DNA sequences were translated as per
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Figure 5 Role of ToLCKeV AC3 on gene-silencing. (a) High level transcription of a part of PCNA gene lead to the reduced growth of the
plant. Retardation is observed in the growth of the plant agroinoculated with the wild type VIGS vector (wild type AC3) along with PCNA
fragment under 35S promoter. Growth retardation is evident in this experiment by shortened height and decreased internodal distance between
the stems of the tomato plant (plant on the left) and the plant agroinoculated with AC3 mutated VIGS vector (middle), control vector without
any geminiviral DNA (right) and plant without any agroinoculation (not shown). (b) Growth retardation was coupled with reduced flowering

(circle) and no fruits. (c) Normal flowering (circles) and developing fruits (arrow) were observed in plant agroinoculated with AC3 mutated VIGS
vector. (d) Leaf morphology was altered in the plants agroinoculated with wild type VIGS vector.
A\

Table 5 Plant height and inter-nodal distance of the tomato plants agroinfiltrated with VIGS vectors at 45 dpi

Vector Infiltrated

pCK2-PCNA pCK2M21-PCNA pC-PCNA No Vector
Number of Plants 10 10 10 10
Average Height (in cm) 64 105 102 110
Number of Internodes 12 11 11 12
Average Internodal Distance (in cm) 533 9.54 927 9.16
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the reduced genetic code for M13 phage in E. coli
ER2738. The sequence of the peptides was analyzed by
‘BioEdit’ software and the peptides common in MBP-
AC3 and MBP interacting peptides were removed. Each
peptide sequence thus obtained was then searched for
homologous peptide sequences in proteins against the
Arabidopsis non-redundant protein database at NCBI
through ‘blastp’ programme adjusted for small sequence
analysis. Initially we have searched for the known AC3
interacting proteins in the blast hits and have taken the
E-value of pRBR (blast hit observed for the peptide
sequence “FPKAFHHHKIYK” as the threshold for filter-
ing the blast results. Further, we have shortlisted only
those proteins with at least two hits from the same or
different peptides or those with E-value less than the
blast hit of GRIK1, another protein known to interact
with Rep.

Site directed mutagenesis
AC3 ORF was mutated at three sites - one at base posi-
tion 2 and others at bases 62 and 64 of AC3 ORF in
two steps. Initially, the first mutation was carried out at
the second base of AC3 ORF with overlapping oligos for
both strands (ACM Fwd and ACM Rev). These oligos
were used to amplify the whole pGEMT-Easy vector
containing the wild type CR-AC3 region of the virus.
The resulting amplified vector was incubated with T4
polynucleotide kinase (MBI Fermentas) along with T4-
DNA ligase (MBI Fermentas) in the ligation reaction
mix. The ligated products were transformed into E. coli
DHb5a. Plasmids were isolated from each bacterial col-
ony and sequenced to confirm the site-directed muta-
tion. This plasmid containing mutated AC3 ORF at start
codon (CR-AC3M) was utilized to generate two more
site-directed mutations at bases 62 and 64 with the oli-
gos AC3™?! Fwd, AC3™?! Rev. The resulting construct
was named CR-AC3™?!. Sequence of the oligos used
was:

AC3M Fwd: 5'- GTTCTGCAACGTGCACGGATTCACG-
CACAGG-3’

AC3M Rev: 5'- CCTGTGCGTGAATCCGTGCACGTTGCA-
GAAC-3’

AC3™?' Fwd: 5'- GGCGTGTTTATCTAGTAAATT-
CAAAATCCC-3’

AC3M?! Rev: 5'- GGGATTTTGAATTTACTAGATAAA -
CACGCC-3’

Construction of yeast replicons

ARS containing yeast plasmid YCp50 was subjected to
restriction digestion with Xho I and Bgl II to delete part
of the ARS sequence rendering it replication deficient.
The resulting plasmid is ligated by end filling and is
called YCpO™. pGEMT-Easy clones containing CR-AC3
or CR-AC3™ region were digested with Hind III
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restriction enzyme. The resulting CR-AC3 and CR-
AC3M were cloned into Hind III site of YCpO™ to gener-
ate YCp-CRAC3 or YCp-CRAC3™.

Construction of plant replicons and VIGS vectors
Hind III and EcoR I digested CaMV 35S cassette from
pBI121 plasmid was cloned into Hind III and EcoR I
digested plant binary vector pCAMBIA1391Z. EcoR I
digested CR region of the ToLCKeV genome was cloned
adjacent to the 35S cassette to generate pC. CR-AC3 or
CR-AC3™?! was cloned into the Hind III site of the pC
vector to generate pCK2 or pCK2™?! respectively. These
plasmids were transformed into Agrobacterium tumefa-
ciens (LBA4404). Cultures from single colonies of agrobac-
terium were grown and used for agroinfiltration studies.
VIGS vectors were constructed by cloning 300 bp tomato
PCNA into the BamH I site of the pCK2 or pCK2™?', Oli-
gos used to amplify the PCNA fragment were:

PCNA Fwd: 5- ACGGATCCGTTCTAGAATCGAT-
TAAGGATCTGG- 3

PCNA Rev: 5'- GGGGATCCCCATTAGCTTCATCT-
CAAAATCAG- ¥

3.3.13.2 Transient replication assay in plant leaves
The binary plasmid containing pCK2 replicon or
pCK2™?! replicon containing agrobacterium was grown
in YEM at 30°C till ODggo = 1.0-2.0. Cells were har-
vested and washed with sterile YEM to remove antibio-
tic. Agrobacterium cells were resuspended in YEM to an
ODgpo = 1.0-2.0 and then agroinfiltrated by injecting
into tobacco or tomato leaves. Infiltrated leaves were
collected at various intervals (5, 10, 15 days post inocu-
lation) and genomic DNA was extracted. This genomic
DNA was subjected to Dpn I treatment to remove the
episomal DNA originated from agrobacterium. To quan-
titate the episomal DNA, PCR was done with following
divergent primers (ACM Fwd, AC1 Rev119) and the
amplification was visualized through agarose gel electro-
phoresis. Actin amplification (using Actin Fwd, Actin
Rev oligos) was used as control.

AC3M Fwd: 5’- GTTCTGCAACGTGCACGGATTCACG-
CACAGG-3’

AC1 Rev119: 5’-
GAAAAC-3’

Actin Fwd: 5’- ATGCCATTCTCCGTCTTGACTTG-3’

Actin Rev: 5'- GAGTTGTATGTAGTCTCGTGGATT-3’

AGCTCGAGCTAATCGACTTG-

Additional material

Additional file 1: List of ToLCKeV AC3 interacting phage peptides
and putative interacting proteins. Representative peptides that are
interacting with AC3 are shown in additional file Ta. Proteins that contain
at least five contiguous amino acids identical to the 12mer peptide
obtained from phage display are listed in additional file 1b.
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Additional file 2: Replication efficiency of ToLCKeV in yeast. Yeast
cells were transformed with wild type YCp50 plasmid or YCp-CRAC3
(ToLCKeV) and incubated at 30°C for five days in Ura” medium. Yeast
transformed with YCp50 grew normally while yeast transformed with
YCp-CRAC3 (ToLCKeV) exhibited delayed growth.
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