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Transcriptional control in the prereplicative phase
of T4 development
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Abstract

Control of transcription is crucial for correct gene expression and orderly development. For many years, bacterioph-
age T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of
T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase,
it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes
this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4
prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately
after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently,
the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter
activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected
into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two a subunits of RNA polymerase.
Although work with host promoters predicts that this modification should decrease promoter activity, transcription
from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle
genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into
downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation.
In this activation, the T4 co-activator AsiA binds to Region 4 of s70, the specificity subunit of RNA polymerase. This
binding dramatically remodels this portion of s70, which then allows the T4 activator MotA to also interact with
s70. In addition, AsiA restructuring of s70 prevents Region 4 from forming its normal contacts with the -35 region
of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30
region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase
can be remolded and then exploited to alter promoter specificity.

Background
Expression of the T4 genome is a highly regulated and
elegant process that begins immediately after infection
of the host. Major control of this expression occurs at
the level of transcription. T4 does not encode its own
RNA polymerase (RNAP), but instead encodes multiple
factors, which serve to change the specificity of poly-
merase as infection proceeds. These changes correlate
with the temporal regulation of three classes of tran-
scription: early, middle, and late. Early and middle RNA
is detected prereplicatively [previously reviewed in
[1-6]], while late transcription is concurrent with T4
replication and discussed in another chapter. T4 early

transcripts are generated from early promoters (Pe),
which are active immediately after infection. Early RNA
is detected even in the presence of chloramphenicol, an
antibiotic that prevents protein synthesis. In contrast,
T4 middle transcripts are generated about 1 minute
after infection at 37°C and require phage protein synth-
esis. Middle RNA is synthesized in two ways: 1) activa-
tion of middle promoters (Pm) and 2) extension of Pe
transcripts from early genes into downstream middle
genes.
This review focuses on investigations of T4 early and

middle transcription since those detailed in the last T4
book [1,5]. At the time of that publication, early and
middle transcripts had been extensively characterized,
but the mechanisms underlying their synthesis were just
emerging. In particular, in vitro experiments had just
demonstrated that activation of middle promoters
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requires a T4-modified RNAP and the T4 activator
MotA [7,8]. Subsequent work has identified the needed
RNAP modification as the tight binding of a 10 kDa
protein, AsiA, to the s70 subunit of RNAP [9-13]. In
addition, a wealth of structural and biochemical infor-
mation about E. coli RNAP [reviewed in [14-16]], MotA,
and AsiA [reviewed in [2]] has now become available.
As detailed below, we now have a much more mechan-
istic understanding of the process of prereplicative T4
transcription. To understand this process, we first start
with a review of the host transcriptional machinery and
RNAP.

The E. coli transcriptional machinery
E. coli RNAP holoenzyme, like all bacterial RNAPs, is
composed of a core of subunits (b, b’,a1, a2, and ω),
which contains the active site for RNA synthesis, and a
specificity factor, s, which recognizes promoters within
the DNA and sets the start site for transcription. The
primary s, s70 in E. coli, is used during exponential
growth; alternate s factors direct transcription of genes
needed during different growth conditions or times of
stress [reviewed in [17-19]]. Sequence/function analyses
of hundreds of s factors have identified various regions
and subregions of conservation. Most s factors share
similarity in Regions 2-4, the central through C-terminal
portion of the protein, while primary s factors also have
a related N-terminal portion, Region 1.
Recent structural information, together with previous

and ongoing biochemical and genetic work [reviewed in

[14,15,20,21]], has resulted in a biomolecular under-
standing of RNAP function and the process of transcrip-
tion. Structures of holoenzyme, core, and portions of the
primary s of thermophilic bacteria with and without
DNA [15,16,22-28], and structures of regions of E. coli
s70 alone [29] and in a complex with other proteins
[26,30] are now available. This work indicates that the
interface between s70 and core within the RNAP
holoenzyme is extensive (Figure 1). It includes contact
between a portion of s Region 2 and a coiled/coil
domain composed of b, b’, an interaction of s70 Region
1.1 within the “jaws” in the downstream DNA channel
(where DNA downstream of the transcription start site
will be located when RNAP binds the promoter), and an
interaction between s70 Region 4 and a portion of the b
subunit called the b-flap.
For transcription to begin, portions of RNAP must

first recognize and bind to double-stranded (ds) DNA
recognition elements present within promoter DNA
(Figure 1) [reviewed in [20]]. Each of the C-terminal
domains of the a subunits (a-CTDs) can interact with
an UP element, A/T rich sequences present between
positions -40 and -60. Portions of s70, when present in
RNAP, can interact with three different dsDNA ele-
ments. A helix-turn-helix, DNA binding motif in s70

Region 4 can bind to the -35 element, s70 Region 3 can
bind to a -15TGn-13 sequence (TGn), and s70 subre-
gion 2.4 can bind to positions -12/-11 of a -10 element.
Recognition of the -35 element also requires contact
between residues in s70 Region 4 and the b-flap in

Figure 1 RNAP holoenzyme and the interaction of RNAP with s70-dependent promoters. Structure-based cartoons (left to right) depict
RNAP holoenzyme, RPc (closed complex), RPo (open complex), and EC (elongating complex) with s70 in yellow, core (b,b’,a2, and ω) in
turquoise, DNA in magenta, and RNA in purple. In holoenzyme, the positions of s70 Regions 1.1, 2, 3, and 4, the a-CTDs, the b-flap, and the b,b’
jaws are identified. In RPc, contact can be made between RNAP and promoter dsDNA elements: two UP elements with each of the a-CTDs, the
-35 element with s70 Region 4, TGn (positions -15 to -13) with s70 Region 3, and positions -12/-11 of the -10 element with s70 Region 2. s70

Region 1.1 lies in the downstream DNA channel formed by portions of b and b’ and the b’,b’ jaws are open. In RPo, unwinding of the DNA and
conformational changes within RNAP result in a sharp bend of the DNA into the active site with the formation of the transcription bubble
surrounding the start of transcription, the interaction of s70 Region 2 with nontemplate ssDNA in the -10 element, movement of Region 1.1
from the downstream DNA channel, and contact between the downstream DNA and the b’ clamp. In EC, s70 and the promoter DNA have been
released. The newly synthesized RNA remains annealed to the DNA template in the RNA/DNA hybrid as the previously synthesized RNA is
extruded through the RNA exit channel past the b-flap.
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order to position s70 correctly for simultaneous contact
of the -35 and the downstream elements. Typically, a
promoter only needs to contain two of the three s70-
dependent elements for activity; thus, E. coli promoters
can be loosely classified as -35/-10 (the major class),
TGn/-10 (also called extended -10), or -35/TGn
[reviewed in [20]].
The initial binding of RNAP to the dsDNA promoter

elements usually results in an unstable, “closed” complex
(RPc) (Figure 1). Creation of the stable, “open” complex
(RPo) requires bending and unwinding of the DNA [31]
and major conformational changes (isomerization) of
the polymerase (Figure 1) [[32,33]; reviewed in [20]]. In
RPo the unwinding of the DNA creates the transcription
bubble from -11 to ~+3, exposing the single-stranded
(ss) DNA template for transcription. Addition of ribonu-
cleoside triphosphates (rNTPs) then results in the synth-
esis of RNA, which remains as a DNA/RNA hybrid for
about 8-9 bp. Generation of longer RNA initiates extru-
sion of the RNA through the RNA exit channel formed
by portions of b and b’ within core. Since this channel
includes the s70-bound b-flap, it is thought that the pas-
sage of the RNA through the channel helps to release s
from core, facilitating promoter clearance. The resulting
elongation complex, EC, contains core polymerase, the
DNA template, and the synthesized RNA (Figure 1)
[reviewed in [34]]. The EC moves rapidly along the
DNA at about 50 nt/sec, although the complex can
pause, depending on the sequence [35]. Termination of
transcription occurs either at an intrinsic termination
signal, a stem-loop (hairpin) structure followed by a U-
rich sequence, or a Rho-dependent termination signal
[reviewed in [36,37]]. The formation of the RNA hairpin
by an intrinsic terminator sequence may facilitate termi-
nation by destabilizing the RNA/DNA hybrid. Rho-
dependent termination is mediated through the interac-
tion of Rho protein with a rut site (Rho utilization
sequence), an unstructured, sometimes C-rich sequence
that lies upstream of the termination site. After binding

to the RNA, Rho uses ATP hydrolysis to translocate
along the RNA, catching up with the EC at a pause site.
Exactly how Rho disassociates a paused complex is not
yet fully understood; the DNA:RNA helicase activity of
Rho may provide a force to “push” RNAP off the DNA.
Rho alone is sufficient for termination at some Rho-
dependent termination sites. However, at other sites the
termination process also needs the auxiliary E. coli pro-
teins NusA and/or NusG [reviewed in [36]].
When present in intergenic regions, rut sites are read-

ily available to interact with Rho. However, when pre-
sent in protein-coding regions, these sites can be
masked by translating ribosomes. In this case, Rho ter-
mination is not observed unless the upstream gene is
not translated, for example, when a mutation has gener-
ated a nonsense codon. In such a case, Rho-dependent
termination can prevent transcription from extending
into the downstream gene. Thus, in this situation, which
is called polarity [38], expression of both the upstream
mutated gene and the downstream gene is prevented.

T4 early transcription
Early promoters
T4 only infects exponentially growing E. coli, and tran-
scription of T4 early genes begins immediately after
infection. Thus, for an efficient infection, the phage
must rapidly redirect the s70-associated RNAP, which is
actively engaged in transcription of the host genome, to
the T4 early promoters. This immediate takeover is suc-
cessful in part because most T4 early promoters contain
excellent matches to the s70-RNAP recognition ele-
ments (-35, TGn, and -10 elements) and to the a-CTD
UP elements (Figure 2; for lists of T4 early promoter
sequences, see [4,5]). However, sequence alignments of
T4 early promoters reveal additional regions of consen-
sus, suggesting that they contain other bits of informa-
tion that can optimize the interaction of host RNAP
with the promoter elements. Consequently, unlike most
host promoters that belong to the -35/-10, TGn/-10 or

Figure 2 Comparison of E. coli host, T4 early, and T4 middle promoter sequences. Top, Sequences and positions of host promoter
recognition elements for s70-RNAP (UP, -35, TGn, -10) are shown [20,150]. Below, similar consensus sequences found in T4 early [4] and middle
[91] promoters are in black and differences are in red; the MotA box consensus sequence in T4 middle promoters is in green. Spacer lengths
between the TGn elements and the -35 elements (host and T4 early) or the MotA box are indicated. W = A or T; R = A or G; Y = C or T, n = any
nucleotide; an uppercase letter represents a more highly conserved base.
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-35/TGn class, T4 early promoters can be described as
“über” UP/-35/TGn/-10 promoters. Indeed, most T4
early promoters compete extremely well with the host
promoters for the available RNAP [39] and are similar
to other very strong phage promoters, such as T7 PA1
and l PL.
The T4 Alt protein
Besides the sheer strength of its early promoters, T4 has
another strategy, the Alt protein, to establish transcrip-
tional dominance [[40-43], reviewed in [1,4]]. Alt, a
mono-ADP-ribosyltransferase, ADP-ribosylates a specific
residue, Arg265, on one of the two a subunits of RNAP.
In addition, Alt modifies a fraction of other host pro-
teins, including the other RNAP subunits and host pro-
teins involved in translation and cell metabolism. Alt is
an internal phage head protein that is injected with the
phage DNA. Consequently, Alt modification occurs
immediately after infection and does not require phage
protein synthesis. Each a subunit is distinct (one a
interacts with b while the other interacts with b’) and
Alt modification is thought to specifically target a parti-
cular a, although which particular a is not known.
What is the purpose of Alt modification? The major

Alt target, a Arg265, has been shown to be crucial for
the interaction of an a-CTD with a promoter UP ele-
ment [44-46] and with some host activators, including
c-AMP receptor protein (CRP), a global regulator of E.
coli [46,47]. Thus, an obvious hypothesis is that Alt sim-
ply impairs host promoters that either need these activa-
tors or are enhanced by a-CTD/UP element interaction.
However, overexpression of Alt from a plasmid does not
affect E. coli growth [40], and general transcription of E.
coli DNA in vitro is not impaired when using Alt-modi-
fied RNAP [48]. Instead, it appears that Alt-modification
is helpful because it increases the activity of certain T4
early promoters. This 2-fold enhancement of activity has
been observed both in vivo [40,49] and in vitro [48].
How Alt-modification stimulates particular early promo-
ters is not known, but it is clear that it is not simply
due to their general strength. Other strong promoters,
such as Ptac, T7 PA1 and PA2, T5 P207, and even some of
the T4 early promoters, are unaffected when using Alt-
modified RNAP [49]. Alt-mediated stimulation of a pro-
moter is also not dependent on specific s70-dependent
elements (-35, TGn, and -10 elements); some promoters
with identical sequences in these regions are stimulated
by Alt while others are not [49]. A comprehensive
mutational analysis of the T4 early promoter P8.1 and
Ptac reveals that there is not a single, specific promoter
position(s) responsible for the Alt effect. This result sug-
gests that the mechanism of Alt stimulation may involve
cross-talk between RNAP and more than one promoter
region [50] or that ADP-ribosylation of a Arg265 is a
secondary, less significant activity of Alt and additional

work on the importance of this injected enzyme is
needed.
Continuing early strategies for T4 domination
Because T4 promoters are so efficient at out-competing
those of the host, a burst of immediate early transcrip-
tion occurs within the first minute of infection. From
this transcription follows a wave of early products that
continue the phage takeover of the host transcriptional
machinery. One such product is the T4 Alc protein, a
transcription terminator that is specific for dC-contain-
ing DNA, that is, DNA that contains unmodified cyto-
sines. Consequently, Alc terminates transcription from
host DNA without affecting transcription from T4
DNA, whose cytosines are hydroxymethylated and glu-
cosylated [[51,52]; reviewed in [1,4]]. Alc directs RNAP
to terminate at multiple, frequent, and discrete sites
along dC-containing DNA. The mechanism of Alc is
not known. Unlike other terminating factors, Alc does
not appear to interact with either RNA or DNA, and
decreasing the rate of RNA synthesis or RNAP pausing
near an Alc termination site actually impairs Alc termi-
nation [51]. Mutations within an N-terminal region of
the b subunit of RNAP, a region that is not essential for
E. coli (dispensable region I), prevent Alc -mediated ter-
mination, suggesting that an interaction site for Alc may
reside in this region [52].
T4 also encodes two other ADP-ribosylating enzymes,

ModA and ModB, as early products. Like Alt, ModA
modifies Arg265 of RNAP a [[53,48]; reviewed in [1,4]].
However, unlike Alt, ModA almost exclusively targets
the RNAP a subunits. In addition, ModA modifies both
a subunits so there is no asymmetry to ModA modifica-
tion. Synthesis of ModA is highly toxic to E. coli. In
vitro, ModA-modified RNAP is unable to interact with
UP elements or to interact with CRP [cited in [40]] and
is less active than unmodified RNAP when using either
E. coli or T4 DNA [48]. Thus, it has been suggested that
ModA helps to diminish both host and T4 early promo-
ter activity, reprogramming the transcriptional machin-
ery for the coming wave of middle transcription [48].
However, a deletion of the modA gene does not affect
the rapid decrease in early transcription or the decrease
in the synthesis of early gene products, which begins
about 3 minutes post-infection [54]. This result suggests
that the phage employs other as yet unknown strategies
to stop transcription from early promoters. ModB, the
other early ADP-ribosylating enzyme, targets host trans-
lation factors, the ribosomal protein S30 and trigger fac-
tor, which presumably helps to facilitate T4 translation
[43].
Finally, many of the early transcripts include genes of

unknown function and come from regions of the T4
genome that are not essential for infection of wild type
(wt) E. coli under normal laboratory conditions.
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Presumably, these genes encode phage factors that are
useful under specific growth conditions or in certain
strains. Whether any of these gene products aid T4 in
its takeover of the host transcriptional machinery is not
known.
The switch to middle transcription
Within a minute of infection at 37°C, some of the T4
early products mediate the transition from early to mid-
dle gene expression. As detailed below, the MotA activa-
tor and AsiA co-activator are important partners in this
transition, since they direct RNAP to transcribe from
middle promoters. In addition, the ComC-a protein,
described later, may also have a role in the extension of
early RNAs into downstream middle genes or the stabi-
lity of such transcripts once they are formed.
As middle transcription begins, certain early RNAs

decay rapidly after their initial burst of transcription.
This arises from the activity of the early gene product
RegB, an endoribonuclease, which specifically targets
some T4 early mRNAs. For the mRNAs of MotA and
RegB itself, a RegB cleavage site lies within the Shine-
Dalgarno sequence; for ComC-a mRNA, the site is
within AU-rich sequences upstream and downstream of
this sequence [55]. The mechanism by which RegB
recognizes and chooses the specific cleavage site is not
yet known.
The onset of T4 middle transcription also finishes the

process of eliminating host transcription by simply
removing the host DNA template for RNAP. T4-
encoded nucleases, primarily EndoII encoded by denA
and EndoIV encoded by denB, selectively degrade the
dC-containing host DNA ([56,57] and references
therein). Thus, a few minutes after infection, there is
essentially no host DNA to transcribe.

Transcription of middle genes from T4 middle promoters
Middle promoters
Middle genes primarily encode proteins needed for
replication, recombination, and nucleotide metabolism;
various T4-encoded tRNAs; and transcription factors
that program the switch from middle to late promoter
activation. Middle RNAs arise by 2 pathways: extension
of early transcription into middle genes (discussed later)
and the activation of T4 middle promoters by a process
called s appropriation [2]). To date, nearly 60 middle
promoters have been identified (Table 1). Unlike early
promoters, T4 middle promoters contain a host ele-
ment, the s70-dependent -10 sequence, and a phage ele-
ment, a MotA box, which is centered at -30 and
replaces the s70-dependent -35 element present in T4
early promoters and most host promoters (Figure 2). In
addition, about half of the middle promoters also con-
tain TGn, the extended -10 sequence. Activation of the

Table 1 Positions of identified T4 middle promoters

Middle Promoter Start site Reference

PrIIB2 122 [99,141,142]

PrIIB1 377 [99,141,142]

PrIIA 2263 [141,142]

P39 5349 [99]

Pdex.2 10058 [91]

Pdda.1 11138 [91]

P56/69 16813 [99]

Pdam 17617 [91]

P61 19122 [100]

PuvsX 23752 [7]

PsegA 24460 [7]

P42 26320 [100]

P43 29933 [99,143]

P45 32626 [99,143]

P45.2 33257 [143]

P46i(2) 33803 [101]

P46i(1) 34394 [101]

P46 35014 [99,143]

P47 36576 [99,143]

Pagt 38430 [91]

PmobB (Pagt.1) 38682 [99]

Pagt.4 39447 [91]

P55 40180 [100]

P55.8(2) 42542 [101]

P55.8 42805 [100]

PnrdG (P55.9) 43023 [100]

PmobC 43744 [101]

PnrdD+ (P49.1) 6440 [144]

PnrdC(2) 48465 [101]

PnrdC(1) 48492 [101]

PnrdC.7 53325 [101]

PmobD 57389 [101]

PmobD.3 58381 [101]

Ptk.3 61076 [101]

Pvs.7 64382 [101]

PipIII 66724 [101]

PtRNAE (PtRNAsc1) 72593 [99]

P57A 74877 [99]

P1 75393 [99]

PrnlB 109763 [91]

P24.3 110108 [91]

Phoc 111757 [91]

PuvsY 115371 [8,99,126,145]

P30 127234 [102]

P30.2 128355 [102]

P31 131540 [146]

Pcd 132839 [91]

PI-TevIII (PnrdBin) 138939 [147]

PnrdB+ 139878 [148]

PnrdA 142726 [100]

Ptd 145142 [100]
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phage middle promoters requires the concerted effort of
two T4 early products, AsiA and MotA.
AsiA, the co-activator of T4 middle transcription
AsiA (Audrey Stevens inhibitor or anti-sigma inhibitor)
is a small protein of 90 residues. It was originally identi-
fied as a 10 kDa protein that binds very tightly to the
s70 subunit of RNAP [11,58,59] with a ratio of 1:1 [60].
Later work indicated that a monomer of AsiA binds to
C-terminal portions of s70, Regions 4.1 and 4.2
[26,60-70]. In solution, AsiA is a homodimer whose self-
interaction face is composed of mostly hydrophobic resi-
dues within the N-terminal half of the protein [65,71].
A similar face of AsiA interacts with s70 [26], suggesting
that upon binding to s70, a monomer of AsiA in the
homodimer simply replaces its partner for s70. Cur-
iously, the AsiA structure also contains a helix-turn-
helix motif (residues 30 to 59), suggesting the possibility
of an interaction between AsiA and DNA [71]. However,
as yet, no such interaction has been detected.
Multiple contacts make up the interaction between

AsiA and s70 Region 4 (Figure 3A). The NMR structure
(Figure 3B, right) reveals that 18 residues present in
three a helices within the N-terminal half of AsiA (resi-
dues 10 to 42) contact 17 residues of s70 [26]. Biochem-
ical analyses have confirmed that AsiA residues E10,
V14, I17, L18, K20, F21, F36, and I40, which contact s70

Region 4 in the structure, are indeed important for the
AsiA/s70 interaction and/or for AsiA transcriptional
function in vitro [72-74]. Of all of these residues, I17
appears to be the most important, and thus, has been
termed “the linchpin” of the AsiA/s70 Region 4 interac-
tion [74]. A mutant AsiA missing the C-terminal 17
residues is as toxic as the full length protein when
expressed in vivo [72,75], and even a mutant missing
the C-terminal 44 residues is still able to interact with
s70 Region 4 and to co-activate transcription weakly
[72]. These results are consistent with the idea that only
the N-terminal half of AsiA is absolutely required to
form a functional AsiA/s70 complex. Together, the
structural and biochemical work indicate that there is
an extensive interface between the N-terminal half of

AsiA and s70 Region 4, consistent with the early finding
that AsiA copurifies with s70 until urea is added to dis-
sociate the complex [76].
The s70 face of the AsiA/s70 complex includes resi-

dues in Regions 4.1 and 4.2 that normally contact the
-35 DNA element or the b-flap of core [26] (Figure 3).
Mutations within Region 4.1 or Region 4.2, which are at
or near the AsiA contact sites in s70, impair or elimi-
nate AsiA function [77-79], providing biochemical evi-
dence for these interactions. The structure of the AsiA/
s70 Region 4 complex also reveals that AsiA binding
dramatically changes the conformation of s70 Region 4,
converting the DNA binding helix-turn-helix (Figure 3B,
left) into one continuous helix (Figure 3B, right). Such a
conformation would be unable to retain the typical s70

contacts with either the -35 DNA or with the b-flap.
Thus, the association of AsiA with s70 should inhibit
the binding of RNAP with promoters that depend on
recognition of a -35 element. Indeed, early observations
showed that AsiA functions as a transcriptional inhibitor
at most promoters in vitro [9,10], blocking RPc forma-
tion [60], but TGn/-10 promoters, which are indepen-
dent of a RNAP/-35 element contact, are immune to
AsiA [62,66,80]. However, this result is dependent on
the buffer conditions. In the presence of glutamate, a
physiologically relevant anion that is known to facilitate
protein-protein and protein-DNA interactions [81,82],
extended incubations of AsiA-associated RNAP with
-10/-35 and -35/TGn promoters eventually result in the
formation of transcriptionally competent, open com-
plexes that contain AsiA [72,83]. Under these condi-
tions, AsiA inhibition works by significantly slowing the
rate of RPo formation [83]. However, the formation of
these complexes still relies on DNA recognition ele-
ments other than the -35 element (UP, TGn, and -10
elements), again demonstrating that AsiA specifically
targets the interaction of RNAP with the -35 DNA.
Because AsiA strongly inhibits transcription from

-35/-10 and -35/TGn promoters, expression of plasmid-
encoded AsiA is highly toxic in E. coli. Thus, during
infection, AsiA may serve to significantly inhibit host
transcription. Although it might be reasonable to sup-
pose that AsiA performs the same role at T4 early pro-
moters, this is not the case. The shut-off of early
transcription, which occurs a few minutes after infec-
tion, is still observed in a T4 asiA- infection [54], and
early promoters are only modestly affected by AsiA in
vitro [84]. This immunity to AsiA is probably due to the
multiple RNAP recognition elements present in T4 early
promoters (Figure 2). Thus, AsiA inhibition does not
significantly contribute to the early to middle promoter
transition. AsiA also does not help to facilitate the
replacement of s70 by the T4-encoded late s factor,
which is needed for T4 late promoter activity [85],

Table 1 Positions of identified T4 middle promoters
(Continued)

P32 148057* [149]

PsegG 148678 [91]

PdsbA 149873 [129]

PdsbA(2) 149951 [91]

P34i 153011 [99]

P52 65227 [91]

Pndd.3 166702 [91]

Position of transcription start refers to T4 sequence [[4]; http://phage.bioc.
tulane.edu/] Promoter names in parentheses refer to previous designations.
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Figure 3 Interaction of s70 region 4 with -35 element DNA, the b-flap, AsiA and MotA. A) Sequence of s70 Region 4 (residues 540-613)
with subregions 4.1 and 4.2; the a helices H1 through H5 with a turn (T) between H3 and H4 are shown. Residues of s70 that interact with the
-35 element [25] are colored in magenta. Residues that interact with AsiA [26] or the region that interacts with MotA [97,104] is indicated. B)
Structures showing the interaction of T. aquaticus s Region 4 with -35 element DNA [25] (left, accession # 1KU7) and interaction of s70 Region 4
with AsiA [26] (right, accession # 1TLH). s, yellow; DNA, magenta; AsiA, N-terminal half in black, C-terminal half in gray. On the left, the portions
of s that interact with the b-flap (s residues in and near H1, H2, and H5) are circled in turquoise; on the right, H5, the far C-terminal region of
s70 that interacts with MotA, is in the green square. C) Structures showing the interaction of T. thermophilus s H5 with the b-flap tip [22] (left,
accession # 1IW7) and the structure of MotANTD [94] (right, accession # 1I1S) are shown. On the b-flap (left) and MotANTD (right) structures,
hydrophobic residues (L, I, V, or F) and basic residues (K or R) are colored in gray or blue, respectively. The interaction site at the b-flap tip is a
hydrophobic hook, while the structure in MotANTD is a hydrophobic cleft.
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indicating that AsiA is not involved in the middle to late
promoter transition.
Although AsiA was originally designated as an “anti-

sigma” factor and is still frequently referred to as such,
it is important to note that it behaves quite differently
from classic anti-sigma factors. Unlike these factors, its
binding to s70 does not prevent the s70/core interaction;
it does not sequester s70. Instead it functions as a mem-
ber of the RNAP holoenzyme. Consequently, AsiA is
more correctly designated as a co-activator rather than
an anti-sigma factor, and its primary role appears to be
in activation rather than inhibition.
MotA, the transcriptional activator for middle promoters
The T4 motA (modifier of transcription) gene was first
identified from a genetic selection developed to isolate
mutations in T4 that increase the synthesis of the early
gene product rIIA [86]. In fact, expression of several
early genes increase in the T4 motA- infection, presum-
ably because of a delay in the shift from early to middle
transcription [87]. MotA is a basic protein of 211 amino
acids, which is expressed as an early product [88]. The
MotA mRNA is cleaved within its Shine-Dalgarno
sequence by the T4 nuclease, RegB. Consequently, the
burst of MotA protein synthesis, which occurs within
the first couple minutes of infection [55], must be suffi-
cient for all the subsequent MotA-dependent
transcription.
MotA binds to a DNA recognition element, the MotA

box, to activate transcription in the presence of AsiA-
associated RNAP [7,8,11-13,89,90]. A MotA box consen-
sus sequence of 5’(a/t)(a/t)(a/t)TGCTTtA3’ [91] has
been derived from 58 T4 middle promoters (Pm) (Table
1). This sequence is positioned 12 bp +/- 1 from the
s70-dependent -10 element,-12TAtaaT-7 (Figure 2).
MotA functions as a monomer [92-94] with two distinct
domains [95]. The N-terminal half of the protein,
MotANTD contains the trans-activation function [96-98].
The structure of this region shows five a-helices, with
helices 1, 3, 4, and 5 packing around the central helix 2
[93]. The C-terminal half, MotACTD, binds MotA box
DNA [97] and consists of a saddle-shaped, ‘double wing’
motif, three a-helices interspersed with six b-strands
[94]. As information about MotA-dependent activation
has emerged, it has become apparent that MotA differs
from other activators of bacterial RNAP in several
important aspects. The unique aspects of MotA are dis-
cussed below.
1) MotA tolerates deviations within the MotA box
consensus sequence Early work [[3,99]; reviewed in [1]]
identified a highly conserved MotA box sequence of (a/
t)(a/t)TGCTT(t/c)a with an invariant center CTT based
on more than twenty T4 middle promoters. However,
subsequent mutational analyses revealed that most sin-
gle bp changes within the consensus sequence, even

within the center CTT, are well-tolerated for MotA
binding and activation in vitro [100]. Furthermore, sev-
eral active middle promoters have been identified whose
MotA boxes deviate significantly from the consensus,
confirming that MotA is indeed tolerant of bp changes
in vivo [91,100-102].
An examination of the recognized base determinants

within the MotA box has revealed that MotA senses
minor groove moieties at positions -32 and -33 and
major groove determinants at positions -28 and -29
[103]. (For this work, the MotA box was located at posi-
tions -35 to -26, its position when it is present 13 bp
upstream of the -10 element.) In particular, the 5-Me
on -29 T contributes to MotA binding. However, despite
its high conservation, there seems to be little base
recognition of -31 G:C, -30 C:G at the center of the
MotA box. In wt T4 DNA, each cytosine in this
sequence is modified by the presence of a hydroxy-
methylated, glucosylated moiety at cytosine position 5.
This modification places a large, bulky group within the
major groove, making it highly unlikely that MotA
could contact a major groove base determinant at these
positions. In addition, MotA binds and activates tran-
scription using unmodified DNA; thus, the modification
itself cannot be required for function. However, for two
specific sequences, DNA modification does seem to
affect MotA activity. One case is the middle promoter
upstream of gene 46, P46. The MotA box within P46
contains the unusual center sequence ACTT rather than
the consensus GCTT. MotA binds a MotA box with the
ACTT sequence poorly, and MotA activation of P46
in vitro using wt T4 DNA is significantly better than
that observed with unmodified DNA [100]. These results
suggest that DNA modification may be needed for full
activity of the ACTT MotA box motif. On the other
hand, when using unmodified DNA in vitro, MotA
binds a MotA box with a center sequence of GATT
nearly as well as one with the consensus GCTT
sequence, and a promoter with the GATT motif is fully
activated by MotA in vitro. However, several potential
T4 middle promoter sequences with a GATT MotA box
and an excellent s70-dependent -10 element are present
within the T4 genome, but these promoters are not
active [100]. This result suggests that the cytosine modi-
fication opposite the G somehow “silences” GATT mid-
dle promoter sequences.
2) MotA is not a strong DNA-binding protein In con-
trast to many other well-characterized activators of E.
coli RNAP, MotA has a high apparent dissociation con-
stant for its binding site (100 - 600 nM [92,103,104]),
and a large excess of MotA relative to DNA is needed
to detect a MotA/DNA complex in a gel retardation
assay or to detect protein protection of the DNA in
footprinting assays [90]. In contrast, stoichiometric
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levels of MotA are sufficient for transcription in vitro
[90]. These results are inconsistent with the idea that
the tight binding of MotA to a middle promoter recruits
AsiA-associated RNAP for transcription. In fact, in
nuclease protection assays, MotA binding to the MotA
box of a middle promoter is much stronger in the pre-
sence of AsiA and RNAP than with MotA alone [89,90].
Furthermore, in contrast to the sequence deviations per-
mitted within the MotA box, nearly all middle promo-
ters have a stringent requirement for an excellent match
to the s70-dependent -10 element [91,100,101]. This
observation suggests that the interaction of s70 Region
2.4 with its cognate -10 sequence contributes at least as
much as MotA binding to the MotA box in the estab-
lishment of a stable RNAP/MotA/AsiA/Pm complex.
3) The MotA binding site on s70 is unique among
previously characterized activators of RNAP Like
many other characterized activators, MotA interacts
with s70 residues within Region 4 to activate transcrip-
tion. However, other activators target basic s70 residues
from 593 to 603 within Region 4.2 that are immediately
C-terminal to residues that interact specifically with the
-35 element DNA [27,105-112] [Figure 3A; reviewed in
[113]]. In contrast, the interaction site for MotA is a
hydrophobic/acidic helix (H5) located at the far C-ter-
minus of s70 (Figure 3A). MotANTD interacts with this
region in vitro and mutations within s70 H5 impair both
MotA binding to s70 and MotA-dependent transcription
[77,97,104]. In addition, a mutation within H5 restores
infectivity of a T4 motA- phage in a particular strain of
E. coli, TabG [114], which does not support T4 motA-
growth [115].
Recent structural and biochemical work has indicated

that a basic/hydrophobic cleft within MotANTD contains
the molecular face that interacts with s70 H5 (Figure
3C, right). Mutation of MotA residues K3, K28, or Q76,
which lie in this cleft, impair the ability of MotA to
interact with s70 H5 and to activate transcription, and
render the protein incapable of complementing a T4
motA- phage for growth [104]. Interestingly, substitu-
tions of MotA residues D30, F31, and D67, which lie on
another exposed surface outside of this cleft, also have
deleterious effects on the interaction with s70, transcrip-
tion, and/or phage viability [98,104]. These residues are
contained within a hydrophobic, acidic patch, which
may also be involved in MotA activation or another uni-
dentified function of MotA.
The process of sigma appropriation
The mechanism of MotA-dependent activation occurs
through a novel process, called sigma appropriation
[reviewed in [2]]. Insight into this process began with the
finding that some middle promoters function in vitro
with RNAP alone. The middle promoter PuvsX, which is

positioned upstream of the T4 recombination gene uvsX,
is such a promoter [13]. This promoter is active because
it has UP elements and a perfect -10 element to compen-
sate for its weak homology to a s70 -35 sequence. (It
should be noted that significant activity of PuvsX and
other middle promoters in the absence of MotA/AsiA is
only seen when using unmodified DNA, because the
modification present in T4 DNA obscures needed major
grove contacts for RNAP.) Using unmodified PuvsX DNA,
it has been possible to investigate how the presence of
MotA and AsiA alone and together affect the interactions
between RNAP and a middle promoter [72,89,90,103].
The RPo formed by RNAP and PuvsX exhibits protein/
DNA contacts that are similar to those seen using a typi-
cal -35/-10 promoter; addition of MotA in the absence of
AsiA does not significantly alter these contacts. As
expected, addition of AsiA without MotA inhibits the
formation of a stable complex. However, in the presence
of both MotA and AsiA, a unique RPo is observed. This
MotA/AsiA activated complex has the expected interac-
tions between RNAP and the -10 element, but it has
unique protein-DNA interactions upstream of the -10
element. In particular, s70 Region 4 does not make its
usual contacts with the -35 element DNA; rather MotA
binds to the MotA box that overlaps the -35 sequence.
As expected, when using fully ADP-ribosylated RNAP
there is an abrupt loss of footprint protection just
upstream of the MotA box in PuvsX, consistent with the
loss of UP element interactions when both a-CTD’s are
modified; when using RNAP that has not been ADP-ribo-
sylated, the UP elements in PuvsX are protected.
Taken together, these biochemical studies argued that

within the activated complex, s70 Region 2.4 binds
tightly to the s70-dependent -10 element, but the
MotA/MotA box interaction is somehow able to replace
the contact that is normally made between s70 Region 4
and the -35 DNA (Figure 4) [89,103]. The subsequent
AsiA/s70 Region 4 structure [26] (Figure 3B, right)
shows just how this can be done. Through its multiple
contacts with s70 residues in Regions 4.1 and 4.2, AsiA
remodels Region 4 of s70. When the AsiA/s70 complex
then binds to core, s70 Region 4 is incapable of forming
its normal contacts with -35 element DNA (Figure 3B,
left). In addition, the restructuring of s70 Region 4 pre-
vents its interaction with the b-flap, allowing the far
C-terminal region H5 of s70 to remain available for its
interaction with MotA. Consequently, in the presence of
AsiA-associated RNAP, MotA can interact both with
the MotA box and with s70 H5 [77,97,104].
Recent work has suggested that additional portions of

AsiA, MotA and RNAP may be important for s appro-
priation. First, the C-terminal region of AsiA (residues
74-90) may contribute to activation at PuvsX by directly
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interacting both with the b-flap and with MotANTD. In
particular, the AsiA N74D substitution reduces an
AsiA/b-flap interaction observed in a 2-hybrid assay and
impairs the ability of AsiA to inhibit transcription from
a -35/-10 promoter in vitro [116]. This mutation also
renders AsiA defective in co-activating transcription
from PuvsX in vitro if it is coupled with a s70 F563Y sub-
stitution that weakens the interaction of AsiA with s70

Region 4 [117]. On the other hand, an AsiA protein
with either a M86T or R82E substitution has a reduced
capacity to interact with MotANTD in a 2-hybrid assay
and yields reduced levels of MotA/AsiA activated tran-
scription from PuvsX in vitro [118]. The M86 and R82
mutations do not affect the interaction of AsiA with s70

or with the b-flap, and they do not compromise the
ability of AsiA to inhibit transcription [118], suggesting
that they specifically affect the interaction with MotA.
These results argue that AsiA serves as a bridge, which
connects s70, the b-flap, and MotA. However, in other
experiments, MotA/AsiA activation of PuvsX is not
affected when using AsiA proteins with deletions of this
C-terminal region (Δ79-90 and Δ74-90), and even AsiA
Δ47-90 still retains some ability to co-activate transcrip-
tion [72]. Furthermore, the C-terminal half of the AsiA
ortholog of the vibrio phage KVP40 (discussed below)
has little or no sequence homology with its T4 counter-
part yet in the presence of T4 MotA and E. coli RNAP,
it effectively co-activates transcription from PuvsX in

vitro [119], and NMR analyses indicate that the addition
of MotA to the AsiA/s70 Region 4 complex does not
significantly perturb chemical shifts of AsiA residues
[104]. Thus, further work is needed to clarify the role of
the of AsiA C-terminal region. Finally, very recent work
has shown that the inability of T4 motA mutants to
plate on the TabG strain arises from a G1249D substitu-
tion within b, thereby implicating a region of b that is
distinct from the b-flap in MotA/AsiA activation [120].
This mutation is located immediately adjacent to a
hydrophobic pocket, called the Switch 3 loop, which is
thought to aid in the separation of the RNA from the
DNA-RNA hybrid as RNA enters the RNA exit channel
[28]. The presence of the b G1249D mutation specifi-
cally impairs transcription from T4 middle promoters
in vivo, but whether the substitution directly or indir-
ectly affects protein-protein interactions is not yet
known [120]. Taken together, these results suggest that
MotA/AsiA activation employs multiple contacts, some
of which are essential under all circumstances (AsiA
with s70 Regions 4.1 and 4.2, MotA with s70 H5) and
some of which may provide additional contacts perhaps
under certain circumstances to strengthen the complex.
Concurrent work with the T4 middle promoter PrIIB2

has yielded somewhat different findings than those
observed with PuvsX [121]. PrIIB2 is a TGn/-10 promoter
that does not require an interaction between s70 Region
4 and the -35 element for activity. Thus, the presence of
AsiA does not inhibit RPo formation at this promoter.
An investigation of the complexes formed at PrIIB2 using
surface plasmon resonance revealed that MotA and
AsiA together stimulate the initial recognition of the
promoter by RNAP. In addition, in vitro transcription
experiments indicated that MotA and AsiA together aid
in promoter clearance, promoting the formation of the
elongating complex. Thus, MotA may activate different
steps in initiation, depending on the type of promoter.
However, there is no evidence to suggest that the pro-
tein/protein and protein/DNA contacts are significantly
different with different middle promoters.
Interestingly, AsiA binds rapidly to s70 when s70 is

free, but binds poorly, if at all, to s70 that is present in
RNAP [122]. The inability of AsiA to bind to s70 within
holoenzyme may be useful for the phage because it ties
the activation of middle promoters to the efficiency of
early transcription. This stems from the fact that s70 is
usually released from holoenzyme once RNAP has
cleared a promoter [[123] and references therein]. Since
there is an excess of core relative to s factors, there is
only a brief moment for AsiA to capture s70. Conse-
quently, the more efficiently the T4 early promoters fire,
the more opportunities are created for AsiA to bind to
s70, which then leads to increased MotA/AsiA-depen-
dent middle promoter transcription.

Figure 4 s appropriation at a T4 middle promoter. Cartoon
depicting a model of RPo at a T4 middle promoter (colors as in
Fig. 1). Interaction of AsiA with s70 Region 4 remodels Region 4,
preventing its interaction with the b-flap or with the -35 region of
the DNA. This interaction then facilitates the interaction of MotANTD

with s70 H5 and MotACTD with the MotA box centered at -30.
Protein-DNA interactions at s70 promoter elements downstream of
the MotA box (the TGn and -10 elements) are not significantly
affected. ADP-ribosylation of Arg265 on each a-CTD, catalyzed by
the T4 Alt and ModA proteins, is denoted by the asterisks. The
modification prevents the a subunits from interacting with DNA
upstream of the MotA box.
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Sigma appropriation in other T4-type phages
Although hundreds of activators of bacterial RNAP are
known, the T4 MotA/AsiA system represents the first
identified case of sigma appropriation. A search for
MotA and AsiA orthologs has revealed several other
T4-type phage genomes that contain both motA and
asiA genes [[124] and http://phage.bioc.tulane.edu/].
These range from other coliphages (RB51, RB32, and
RB69) to more distantly related phages that infect aero-
monas (PHG25, PHG31, and 44RR) and acinetobacter
(PHG133). In addition, orthologs for asiA have also
been found in the genomes of the vibrio phages KVP40
and NT1 and the aeromonas phages PHG65 and Aeh1,
even though these genomes do not have a recognizable
motA. The KVP40 AsiA protein shares only 27% identity
with its T4 counterpart. However, it inhibits transcrip-
tion by E. coli RNAP alone and co-activates transcrip-
tion with T4 MotA as effectively as T4 AsiA [119].
Thus, it may be that KVP40 and other phages that lack
a MotA sequence homolog, do in fact have a functional
analog of the MotA protein. Alternatively, the KVP40
AsiA may serve only as an inhibitor of transcription.
No examples of sigma appropriation outside of T4-

type phage have been discovered. Although sequence
alignments suggested that the E. coli anti-sigma protein
Rsd, which also interacts with s70, may be a distant
member of the AsiA family [119], a structure of the
Rsd/sigma Region 4 complex is not consistent with this
idea [30]. Recent work has identified a protein (CT663)
involved in the developmental pathway of the human
pathogen Chlamydia trachomatis that shares functional
features with AsiA [125]. It binds both to Region 4 of
the primary s (s66) of C. trachomatis and to the b-flap
of core, and it inhibits s66-dependent transcription.
More importantly, like AsiA, it works by remaining
bound to the RNAP holoenzyme rather than by seques-
tering s66.

Transcription of middle genes by the extension of early
transcripts
Even though the expression of middle genes is highly
dependent on the activation of middle promoters, iso-
lated mutations within motA and asiA are surprisingly
not lethal. Such mutant phage show a DNA delay phe-
notype, producing tiny plaques on wt E. coli [11,87].
The replication defect reflects the reduced level of T4
replication proteins, whose genes have MotA-dependent
middle promoters. In addition, two T4 replication ori-
gins are driven by MotA-dependent transcription from
the middle promoters, PuvsY and P34i [126]. However,
deletion of either motA [127] or asiA [54] is lethal.
Recent work suggests that leakiness of the other non-
sense and temperature sensitive mutations provide
enough protein for minimal growth [120].

Besides MotA-dependent promoters, middle RNA is
also generated by the extension of early transcripts into
middle genes. This is because most, if not all, middle
genes are positioned downstream of early gene(s) and
early promoters. Production of this extended RNA is
time-delayed relative to the RNA from the upstream
“immediate early (IE)” gene. Thus, middle RNA gener-
ated from this extension was originally designated
“delayed early” (DE), since it cannot be synthesized until
the elongating RNAP reaches the downstream gene(s).
Early work (reviewed in [1]) classified genes as IE, DE,
or middle based on when and under what conditions
the RNA or the encoded protein was observed. IE RNA
represents transcripts that are detected immediately
after infection and do not require phage protein synth-
esis. DE RNA requires phage protein synthesis, but this
RNA and DE gene products are still detected in a T4
motA- infection. In contrast, the expression of genes
that were classified as “middle” is significantly reduced
in a T4 motA- infection. In addition, while both DE and
“middle” RNA arise after IE transcription, the peak of
the RNA that is substantially dependent on MotA is
slightly later and lasts somewhat longer than the DE
peak. However, it should be noted that these original
designations of genes as DE or middle are now known
to be somewhat arbitrary. Many, if not all, of these
genes are transcribed from both early and middle pro-
moters. In fact, while a microarray analysis investigating
the timing of various prereplicative RNAs [128] was
generally consistent with known Pe and Pm promoters
[4], there were a number of discrepancies, especially
between genes that were originally classified as either
“DE” or “middle”. Thus, it is now clear that both the
extension of early transcripts and the activation of mid-
dle promoters is important for the correct level of mid-
dle transcription.
Early experiments [summarized in [1]] offered evi-

dence that DE RNA synthesis might require a T4 system
to overcome Rho-dependent termination sites located
between IE and DE genes. First, the addition of chlor-
amphenicol at the start of a T4 infection prevents the
generation of DE RNAs, indicating a requirement for
protein synthesis and suggesting that phage-encoded
factor(s) might be needed for the extension of IE RNAs.
Second, in a purified in vitro system using RNAP and
T4 DNA, both IE and DE RNA are synthesized unless
the termination factor Rho is added. Addition of Rho
restricts transcription to IE RNA, indicating that Rho-
dependent termination sites are located upstream of DE
genes. Third, DE RNA from a specific promoter
upstream of gene 32 is not observed in a T4 motA-
infection, suggesting that MotA itself may be needed to
form or stabilize this DE RNA [129]. It is unlikely that a
MotA-dependent gene product, rather than MotA, is
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responsible for this effect, since the DE transcripts are
synthesized before or simultaneously with the activation
of middle promoters. Finally, wt T4 does not grow in
particular rho mutant alleles, called nusD, that produce
Rho proteins with altered activity, and the level of cer-
tain DE RNAs and DE gene products in T4/nusD infec-
tions is depressed. An initial interpretation of this result
was that there is more Rho-dependent termination in a
nusD allele, which then depresses the level of DE RNA.
T4 suppressors that grow in nusD were subsequently
isolated and found to contain mutations within the T4
comC-a (also called goF) gene [130,131], which
expresses an early product.
Given all of these findings, it was postulated that T4

uses an anti-termination system, perhaps like the N or
Q systems of phage l [reviewed in [132]], to actively
prevent Rho-dependent termination and that MotA,
ComC-a, or another protein is involved in this process.
However, comC-a is not essential, and the addition of
amino acid analogs, which would generate nonfunctional
proteins, has been shown to be sufficient for the synth-
esis of at least certain DE RNAs [reviewed in [1]]. These
results suggest that at least in some cases, translation is
simply needed to prevent polarity; consequently, the
process of translation itself, rather than a specific factor
(s), is sufficient to inhibit Rho termination. If so, the
loss of DE RNA observed in the presence of Rho in
vitro would be due to the lack of coupled transcription/
translation. Thus, when the upstream gene is being
translated in an infection in vivo, Rho RNA binding
sites would be occluded by ribosomes and consequently
unavailable.
More recent work has suggested that Rho may affect

DE RNA in vivo because of its ability to bind RNA
rather than its termination activity [133,134]. Sequen-
cing of the rho gene in six nusD alleles has revealed that
in five cases, the rho mutation lies within the RNA-
binding site of Rho. Furthermore, the addition of such a
mutant Rho protein to an in vitro transcription system
does not produce more termination but rather results in
an altered and complicated pattern of termination.
There is actually less termination at legitimate Rho-
dependent termination sites, but in some cases, more
termination at other sites. Unexpectedly, increasing the
amount of the mutant Rho proteins rescues T4 growth
in a nusD allele, a result that is not compatible with the
mutant Rho promoting more termination. In addition,
expression of the Rop protein, an RNA-binding protein
encoded by the pBR322 plasmid, also rescues T4 growth
in nusD.
Taken together, these results have led to another

hypothesis to explain DE RNA. In this model, T4 DE
transcripts in vivo are susceptible to nuclease digestion
and require a process to limit this degradation. Active

translation can prevent this nuclease attack, thus
explaining the loss of DE RNA in the presence of
chloramphenicol. In addition, a protein that can bind
RNA, such as wt Rho, Rop, or perhaps the mutated T4
ComC-a, may also be useful. Thus, the nusD Rho pro-
teins are defective not because they terminate IE tran-
scripts more effectively, but because they have lost the
ability of wt Rho to bind and somehow protect the
RNA. However, it should be noted that as of yet, there
is no evidence identifying a particular nuclease(s)
involved in this model. Furthermore, the function of
wt comC-a or exactly how Rho or Rop “protect” DE
RNA is not known. Recent work has shown that both
transcription termination and increased mRNA stabi-
lity by RNA-binding proteins are involved in the regu-
lation of gene expression in eukaryotes and their
viruses [135,136]. A thorough investigation of these
processes in the simple T4 system could provide a
powerful tool to understanding this mode of gene
regulation.

Conclusion
T4 regulates its development and the timed expression
of prereplicative genes by a sophisticated process. In the
past few years, we have learned how T4 employs several
elegant strategies, from encoding factors to alter the
host RNAP specificity to simply degrading the host
DNA, in order to overtake the host transcriptional
machinery. Some of these strategies have revealed unex-
pected and fundamentally significant findings about
RNAP. For example, studies with T4 early promoters
have challenged previous ideas about how the a-CTDs
of RNAP affect transcription. Work with host promoters
argued that contact between the a-CTDs of RNAP and
promoter UP elements or certain activators increases
transcription; in particular, a residue Arg265 was crucial
for this interaction. Thus, one would expect that modifi-
cation of Arg265 would depress transcription. However,
the activity of certain T4 early promoters actually
increases when Arg265 of one of the two RNAP a subu-
nits is ADP-ribosylated. This finding underscores our
limited understanding of a-CTD function and highlights
how T4 can provide a tool for investigating this subunit
of RNAP.
The T4 system has also revealed a previously

unknown method of transcription activation called
sigma appropriation. This process is characterized by
the binding of a small protein, T4 AsiA, to Region 4 of
the s70 subunit of RNAP, which then remodels this por-
tion of polymerase. The conformation of Region 4 in
the AsiA/s70 Region 4 structure differs dramatically
from that seen in other structures of primary s factors
and demonstrates that Region 4 has a previously
unknown flexibility. Furthermore, studies with the T4
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MotA activator have identified the far C-terminal region
of s70 as a target for activation. Prior to the T4 work, it
was thought that this portion of s70, which is normally
embedded within the b-flap “hook” of core, is unavail-
able. Based on the novel strategy T4 employs to activate
its middle promoters, we now know how a domain
within RNAP can be remodeled and then exploited to
alter promoter specificity. It may be that other examples
of this type of RNAP restructuring will be uncovered.
The core subunits of bacterial RNAP are generally

conserved throughout biology both in structure and in
function [reviewed in [137,138]]. In addition, it is now
apparent that eukaryotic RNAP II employs protein com-
plexes that function much like s factors to recognize
different core promoter sequences [[139,140] and refer-
ences therein]. Thus, the T4 system, which is simple in
components yet complex in details, provides an amen-
able resource for answering basic questions about the
complicated process of transcriptional regulation. Using
this system, we have been able to uncover at a molecu-
lar level many of the protein/protein and protein/DNA
interactions that are needed to convert the host RNAP
into a RNAP that is dedicated to the phage. This work
has given us “snapshots” of the transcriptionally compe-
tent protein/DNA complexes generated by the actions
of the T4 proteins. The challenge in the future will be
to understand at a detailed mechanistic level how these
interactions modulate the various “nuts and bolts” of
the RNAP machine.

List of abbreviations
bp: base pair(s); ds: double-stranded; ss: single-stranded; RPo: open complex;
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13 (extended -10 motif); Pe: T4 early promoter; Pm: T4 middle promoter;
rNTPs: ribonucleoside triphosphates; wt: wild type.
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