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Abstract

As the primary etiological agents of cervical cancer, human papillomaviruses (HPVs) must deliver their genetic
material into the nucleus of the target cell. The viral capsid has evolved to fulfil various roles that are critical to
establish viral infection. The particle interacts with the cell surface via interaction of the major capsid protein, L1,
with heparan sulfate proteoglycans. Moreover, accumulating evidence suggests the involvement of a secondary
receptor and a possible role for the minor capsid protein, L2, in cell surface interactions.
The entry of HPV in vitro is initiated by binding to a cell surface receptor in contrast to the in vivo situation where
the basement membrane has recently been identified as the primary site of virus binding. Binding of HPV triggers
conformational changes, which affect both capsid proteins L1 and L2, and such changes are a prerequisite for
interaction with the elusive uptake receptor. Most HPV types that have been examined, appear to enter the cell via
a clathrin-dependent endocytic mechanism, although many data are inconclusive and inconsistent. Furthermore,
the productive entry of HPV is a process that occurs slowly and asynchronously and it is characterised by an unu-
sually extended residence on the cell surface.
Despite the significant advances and the emergence of a general picture of the infectious HPV entry pathway,
many details remain to be clarified. The impressive technological progress in HPV virion analysis achieved over the
past decade, in addition to the improvements in general methodologies for studying viral infections, provide rea-
sons to be optimistic about further advancement of this field.
This mini review is intended to provide a concise overview of the literature in HPV virion/host cell interactions and
the consequences for endocytosis.

Introduction
Human papillomaviruses (HPVs) are small, non-envel-
oped double-stranded DNA viruses that belong to the
Papovaviridae family [1,2]. Scientific evidence accumu-
lated from virological, molecular, clinical and epidemio-
logical studies has identified HPV as the primary
etiological agent in cervical cancer [1,3,4].
Like other viruses, HPVs are obligatory intracellular

parasites and must deliver their genome and accessory
proteins into host cells and subsequently make use of
the biosynthetic cellular machinery for viral replication
[5,6]. The journey of a HPV particle from the cell sur-
face to the cytosol and nucleus consists of a series of
consecutive steps that move it closer to its site of repli-
cation. The viral capsid plays a key role in the establish-
ment of the viral infection [5,7].

By analyzing virus-cell interactions and uptake
mechanisms, much can be learned about the biology of
HPV replication and entry pathways, providing a means
to discover unique ways for exploiting or interfering
with the viral pathogenesis [5,6].
The HPV genome is surrounded by an icosahedral

capsid (T = 7) of 55 nm in diameter composed by two
structural proteins, the major protein L1 and the minor
capsid protein L2 [8]. The L1 proteins are highly con-
served and form 72 five-fold capsomers. The L2 protein
is an internally located multifunctional protein with
roles in genome encapsidation [9-11], L1 interaction
and capsid stabilization [12,13], endosomal escape of
virions [14,15] and nuclear transport of the HPV gen-
ome [15,16]. Viral capsids have evolved to fulfil numer-
ous roles that are critical to the establishment of viral
infection. For non-enveloped viruses, such as HPVs, the
proteinaceous coat encases and protects the viral nucleic
acid and provides the initial interaction site of the viral
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particle with the host cell. After receptor engagement
the virus is internalized and its coat is disassembled to
allow the encapsidated genome access to the cellular
transcription and replication machinery [17].
Infectious HPV particles entry appears to occur speci-

fically in the basal keratinocytes of the mucosal epithe-
lium subsequent to the binding of virions to the
basement membrane of the disrupted epithelium [9,18].
Since HPV replication and assembly requires infected
basal keratinocytes to undergo the stepwise differentia-
tion program of the epithelium [19,20], HPV propaga-
tion in cell culture is a major challenge. The production
of infectious virus particles or virions was impossible
until the development of organotypic raft cultures based
on keratinocytes harbouring HPV genomes. However,
these methods are technically demanding, time-consum-
ing and they only produce relatively limited amounts of
virions. These limitations were partially overcome by the
use of DNA-free virus-like particles (VLPs) and by pseu-
dovirions (PsVs) harbouring reporter plasmids, which
were generated using heterologous expression systems
[21,22]. These VLPs and PsVs have very similar struc-
tural and immunological characteristics to native HPV
virions [8]
Condon optimization of capsid genes yielded high-level

expression of capsid proteins and the development of
packaging cell lines harboring high copy numbers of
packaging plasmids finally allowed the large-scale produc-
tion of PsVs and, subsequently, quasivirions (QVs), which
are “quasi” identical to the authentic HPV virions
[8,21-23]. This has prompted many researchers to study
the HPV-host cell interaction by using VLPs, PsVs or QVs.
HPV-host cell interactions
Cell surface binding: receptors
Host cell entry of HPV is initiated by binding of the
virus particle to cell surface receptors (Figure 1). It has
been suggested that virions bind initially to the base-
ment membrane prior to transfer to the basal keratino-
cyte cell surface [18]. It is important to note that the
entry of HPV in vitro is initiated by binding to a cell
surface receptor in contrast to the in vivo situation
where the basement membrane has recently been identi-
fied as the primary site of virus binding [18,21].
Early work investigating the cell surface receptors

found that HPVs bind to a widely expressed and evolu-
tionary conserved cell surface receptor and that the
interaction depends primarily on L1 [24-27]. Glycosami-
noglycans (GAGs), especially heparan sulfate, were sug-
gested as initial attachment receptors for HPV VLPs
[28-31]. Heparan sulfate proteoglycans (HSPG) are fre-
quently found in the extracellular matrix (ECM) and on
the surface of most cells. They are involved in several
biological functions and because of their location they
are appropriate molecules for viral infection [32,33].

Heparan sulfate is often found on two membrane-bound
proteoglycans, syndecans and glypicans [34]. Glypicans
are predominantly expressed in the central nervous sys-
tem, whereas syndecans are the predominant HSPG in
epithelial cells, the target cells of HPV. Especially synde-
can-1 may serve as the primary attachment receptor in
vivo due to its high expression level in the appropriate
target cells and upregulation during wound healing
[27,35]. Furthermore, other candidate receptors for HPV
have been suggested, such as laminin-5. Several in vitro
studies have shown that HPV can also bind to a recep-
tor in the ECM, identified as laminin-5 which is able to
mediate binding to the ECM [36-38]. However, laminin-
5 interaction seems to be of lesser importance for a pro-
ductive infection and even though the affinity to lami-
nin-5 is higher than to heparan sulfate, infectious
transfer from the ECM seems to require heparan sulfate
binding [27,37,38].
The classical notion of a virus binding to a single

receptor to enter cells through a single defined uptake
mechanism is quickly being overtaken by a more com-
plex picture. New findings, such as a specific co-recep-
tor and virus attachment to multiple receptors, have
raised the question that viruses known to bind to a
non-specific receptor may turn out to also have a more
specific co-receptor [39].
Like HPVs, mammalian herpesviruses adsorb strongly

to proteoglycans, especially HSPGs. For the herpes sim-
plex virus (HSV) this high affinity attachment step
enhances infectivity, although it does not appear to be
an absolute requirement for the virus to infect the cell.
HSPG is preferred and is considered to be a binding
receptor, as opposed to an entry receptor. It is obvious
that for cell penetration, HSV usually interacts with co-
receptors that are distinct from the proteoglycans
attachment receptor [7,40].
Accumulating evidence suggests that a secondary

receptor or co-receptor is also involved in the infectious
internalization of HPV subsequent to interaction with
HSPG [38,41]. It appears that HSPG functions as more
than a simple attachment factor in HPV infection in
that this interaction promotes essential conformational
changes in the viral capsid, but HSPGs are clearly not
the cell surface receptors that mediate virion internaliza-
tion or later events in infection [41].
The cell adhesion receptor a6-integrin, which is

involved in cell to cell interactions, has been suggested
as secondary receptor even though its involvement in
HPV infection is rather controversial [29,35,37,42-44].
Given the close association of proteoglycans and integ-
rins as matrix components, it is possible that the experi-
mental association of a6-integrin with HPV binding and
entry is a secondary effect due to its interaction with
HSPGs [7].
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Several studies suggest a role for L2 in facilitating
infection via interaction with a secondary receptor(s)
[45-48]. Although cell surface interactions predomi-
nantly depend on the major capsid protein L1, it seems
likely that the secondary cell surface receptor is L1-spe-
cific, although, it is possible that L2 may contribute to
surface interactions [21].
These observations could indicate that the cell surface

binding is indeed mediated by more than one receptor.
A reasonable hypothesis is that a productive infection
would require an initial low specificity binding mediated
by L1, followed by the interaction of a more specific
protein component with L2 [7]. A specific region in the
L2 protein was proposed to interact with a cell surface
molecule after attachment of the virus to a primary
receptor. This interpretation suggests a post-attachment

conformational change at the cell surface to unmask
this specific domain in L2, a process that many other
viruses use to trigger downstream events such as sec-
ondary receptor interactions [27,48].
Initial attachment to HSPG moieties functions primarily

to facilitate the critical step of L2 proteolytic cleavage
which is essential for successful infection [41]. The minor
capsid protein L2 is cleaved by furin on the cell surface at
a consensus cleavage site that is conserved among all
papillomaviruses [17]. These sequences are inaccessible at
the surface of mature virions in solution in order to pre-
vent host antibody response to the conserved epitopes
[27]. As mentioned above, capsid interaction with HSPG
results in a conformational change which results in the
exposure of the furin cleavage region. After cleavage, an
additional conformational change may expose the binding

Figure 1 Putative model of interaction of HPV capsids with the ECM and cell surface. 1) HSPG, a widely expressed and evolutionary
conserved cell surface receptor, is suggested as the initial attachment receptor for HPVs and is frequently found in the ECM and on the surface
of most cells. HPV capsids have also been shown to bind to ECM-resident laminin-5 although this interaction seems to be of lesser importance
for a productive infection. 2) Accumulating evidence suggests that a secondary receptor is involved in the infectious entry of HPV subsequent to
HSPG interaction. The capsids are transferred to the putative secondary receptor on the cell surface. Whether transfer from primary ECM binding
sites to primary cell surface binding sites occurs has not been directly investigated (dotted arrows). Capsid interaction with HSPG results in a
conformational change that, in turn, results in the exposure of a furin cleavage site. Following this proteolytic cleavage, an additional
conformational change exposes the binding site for the secondary cell surface receptor or lowers the affinity for the primary receptor which
results in the hand-off to the second receptor, which then triggers endocytosis 3).
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site for the secondary cell receptor, or it lowers the affinity
for the primary receptor, which results in the hand-off to a
secondary receptor [27,41,49].
Taken together, capsid interaction with HSPG induces

conformational changes that result in the exposure of
the L2 amino terminus. Exposure of this L2 N-terminus
allows access to highly conserved consensus furin con-
vertase recognition site and subsequent furin cleavage
which is essential for successful infection. Moreover, the
L2 N-terminus is essential for the L2 protein to adopt a
correct conformation within the assembled capsid. Cor-
rect folding may also require the formation of a disulfide
bond between HPV16 L2 cysteine residues Cys22 and
Cys28, which was recently identified. Mutation of the
contributing cysteine residues rendered mutant virions
non-infectious [15,21,50,51].
Even if keratinocytes are the main targets of HPV and

only entry in these cells has been shown to result in a
productive infection, HPV-VLP are also able to enter
other cellular types such as dendritic cells (DC) or Lan-
gerhans cells (LC). Interactions between these antigen
presenting cells (APCs) and HPV are likely to be impor-
tant for the establishment of the immune response after
a prophylactic vaccination or a natural infection. Bou-
sarghin et al. showed that these APCs differentially
interact with HPV16 VLPs. Although DC and LC are
able to bind and internalize HPV16 VLPs, there are dif-
ferences in VLP binding to DC and LC. DC use heparan
sulfates to bind HPV16 VLPs in contrast to LC on
which heparin does not have any inhibitory effects [52].
Various studies showed that VLPs co-localize with lan-
gerin in LC [52,53]. Although still controversial, the
investigation on the immunogenicity of VLPs supports a
key contribution for the low-affinity Fcg receptors,
expressed on DC, as an important molecule in a HPV-
VLP receptor complex [54,55].

Internalization
After binding to cell surface receptors HPV must be
internalized into the cell to establish an infection. To
date, the dynamics of HPV interaction with the cell sur-
face during the initial stages of infection are not com-
pletely understood and the entry mechanisms and the
molecules involved are contradictory and still a subject
of scientific debate (table 1).
The conflicting data could be due to the “maturity”

state of the VLPs and PsVs used. HPV capsids extracted
from replicating cultured cells can exist in two forms.
“Immature” capsids are larger, less regular and less pro-
tease resistant than “mature” capsids indicating a sub-
stantial change in conformation during the maturation
process [56]. Therefore, it is likely that the omission of
a maturation step could result in assay variability due to
particle heterogeneity [7]. Moreover, HPVs exhibit pro-
miscuous cell association while only completing their
life cycle in differentiating squamous epithelium [57].
Therefore, while the early events of infection may be
similar in permissive and non-permissive cell types,
there is a restriction of viral replicative functions and
virion production that is determined by factors tied to
the keratinocyte differentiation program [7].
Productive entry of HPV involves internalization by

endocytosis, a process that for HPV occurs slowly and
asynchronously over a period of several hours, except
for some non-epithelial cells [8,52,58]. Multiple studies
have shown an unusually extended residence on the cell
surface for HPVs [7,29,59,60]. Most ligands, including
the majority of viruses, are internalized rapidly, within
minutes after the initial receptor encounter and engage-
ment. The reason for the delayed kinetics for HPVs is
unknown, although it is noteworthy that syndecans have
been reported to have a slow rate of internalization after
ligand binding [61]. Alternatively, the conformational

Table 1 Overview HPV internalization studies

HPV type Methods Pathway Reference

HPV16 siRNA-mediated down regulation of clathrin heavy chain/caveolin-1/dynamin/
tetraspanins
dominant negative mutants of EPS15/caveolin-1/dynamin
biochemical inhibitors
caveolae-deficient cells

clathrin- and caveolae-independent
dynamin-independent
lipid raft independent
involvement of tetraspanins

[58]

HPV16
HPV31

biochemical inhibitors clathrin-dependent [66]

HPV16
HPV31

dominant negative mutant of EPS15/caveolin-1/dynamin-2
biochemical inhibitors
co-localization studies of HPV16 and HPV31
association study of HPV31 with detergent resistant microdomains

HPV16 clathrin-dependent
HPV31 caveolae-dependent

[65]

HPV16 co-localization with BPV-L1 VLPs clathrin-dependent [63]

HPV16
HPV31
HPV58

biochemical inhibitors
microscopic analysis

HPV16/58 clathrin-dependent
HPV31 caveolae-dependent

[64]

HPV33 biochemical inhibitors non-caveolae dependent HPV33
uptake

[59]
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changes or the transfer to a secondary receptor that is
sparsely arrayed or exhibits particular requirements for
endocytosis are a possible explanation for the slow
kinetics [8,27,58]. Moreover, in vitro experiments
showed that cell surface dynamics of HPV indicated a
transport mechanism along actin rich cell protrusions to
access the endocytic machinery and thus enhance infec-
tious entry. This transport was facilitated by binding to
receptors that were likely to interact with actin filaments
to mediate the transport towards the cell body by retro-
grade flow. This requirement may contribute to the pro-
longed residence on the cell surface and the impeded
kinetics [8].
Several endocytic pathways have been described and

clathrin- and caveolae-mediated are two main pathways
used by non-enveloped viruses to infect cells [5,62]. A
possible approach to distinguish between the clathrin-
dependent and caveolar pathways is the analysis of bio-
chemical inhibition of ligand uptake, although non-spe-
cific effects must be considered. The development of
molecular inhibitors in the form of dominant-negative
molecules has surpassed the use of biochemical inhibi-
tors in terms of decreasing these non-specific effects.
Selinka et al. examined a set of biochemical inhibitors
for effects on HPV33 PsV infection and found a depen-
dence upon an intact actin cytoskeleton and microtu-
bules. Day et al. investigated the uptake of bovine
papillomaviruses (BPVs) through biochemical inhibitor
analysis and co-localization studies with established
markers of endocytic compartments. Both studies could
not demonstrate the involvement of caveolar endocyto-
sis and concluded that uptake of these viruses occurs
via a clathrin-dependent pathway [59,63]. However, a
study utilizing PsVs, generated by mixing VLPs with
naked DNA, unexpectedly found that HPV31 was sensi-
tive to caveolar inhibition. In contrast, the entry of
HPV16, which phylogenetically, is closely related to
HPV31, and HPV58 was found to be blocked by inhibi-
tors of clathrin-mediated uptake [64]. The data on the
entry of HPV31 was confirmed by Smith et al. who
described a caveolar uptake of HPV31 virions in kerati-
nocytes [65]. However, another study found that bio-
chemical inhibition of clathrin-dependent uptake did
prevent HPV31 infection [66]. HPV31 appears to inter-
act with HSPG similarly to HPV16 for in vivo infection.
Possibly HPV31 interacts differently with or has a
unique co-receptor that shunts it into a different inter-
nalization pathway [67].
Most studies investigating the uptake of HPV16 con-

cluded the involvement of clathrin-dependent endocyto-
sis [63-66]. In contrast to these studies, Spoden et al.
observed clathrin- and caveolae-independent internaliza-
tion of HPV16 PsVs. Entry occurred by a mechanism
that was resistant to combined siRNA-mediated down

regulation of caveolin-1 and clathrin heavy chain as well
as being resistant to over-expression of dominant nega-
tive mutants of caveolin-1 and eps-15, which plays a
role in clathrin coated vesicle formation [58]. The
authors suggested the involvement of tetraspanin-
enriched microdomains that serve as a platform for
uptake by an uncharacterized internalization mechan-
ism. None of the conducted studies demonstrated an
effect of caveolar disruption on HPV16 infection.
Initiation and progression of HPV-associated cervical

cancer have been shown to be related to functional
alterations of LC within the cervical epithelium. Because
of their role in initiating an antiviral immune response,
DC and LC represent an ideal target for immune eva-
sion by viruses. The study of the interactions between
HPV16 VLPs and DC or LC showed that the entry of
virus particles is different as suggested by Fausch et al.
and Yan et al. Fausch et al. showed that DC use a cla-
thrin-mediated endocytosis whereas LC use a different
pathway which is not associated with clathrin or caveo-
lae [68]. Yan et al. show that LC uptake of HPV6 L1
was blocked by filipin pretreatment confirming a role
for caveolin-mediated uptake of VLPs by LC [53].
Another study, however, showed that virus particles use
the same clathrin-dependent endocytic pathway to enter
DC and LC [52].

Conclusions
The most likely scenario for HPV entry includes cell
surface binding of virions mediated via HSPGs. This pri-
mary attachment is dependent only on L1 and does not
require L2. A long delay in internalization is accompa-
nied by changes in the mode of binding and possible
transfer to a secondary receptor. Although there is as
yet no evidence, it is suggestive that L2 is involved in
this early process. The most likely scenario is that the
conformational changes in L2 that occur on the cell sur-
face are necessary to expose a secondary binding site.
HPVs are generally internalized via a clathrin-depen-

dent endocytic mechanism, which is initially dependent
on actin. Some HPV types may use alternative uptake
pathways to enter cells, such as a caveolae-dependent
route or the involvement of tetraspanin-enriched
domains as a platform for viral uptake.
Despite the significant advances and the emergence of

a general picture of the infectious entry pathway of
HPV, many details remain to be clarified. The studies
necessary to elucidate the ambiguous features concern-
ing HPV binding and entry will be technically challen-
ging. However, the remarkable technological advances in
HPV virion analysis achieved over the last decade, in
addition to the improvements in general methodologies
for studying viral infections, provide reasons to be opti-
mistic about further advancement in the field of HPV
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binding and entry. However, even with these advances
ambiguity and a reason for caution still remains. The
plasticity of many cellular pathways means that viral
entry may be impacted by an indirect mechanism rather
than by direct inhibition. Moreover, it is possible that
HPVs make use of multiple internalization pathways.
The next advancements in the study of HPV entry are
the developments in real-time single molecule imaging
of viral infections, which provide an extra level of
sophistication and allow viewing entry and subsequent
trafficking of HPV into live cells with exquisite clarity.
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