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Abstract

Background: Influenza A viruses of domestic birds originate from the natural reservoir in aquatic
birds as a result of interspecies transmission and adaptation to new host species. We previously
noticed that influenza viruses isolated from distinct orders of aquatic and terrestrial birds may differ
in their fine receptor-binding specificity by recognizing the structure of the inner parts of
Neu5Aca2-3Gal-terminated sialyloligosaccharide receptors. To further characterize these
differences, we studied receptor-binding properties of a large panel of influenza A viruses from wild

aquatic birds, poultry, pigs and horses.

Results: Using a competitive solid-phase binding assay, we determined viral binding to polymeric
conjugates of sialyloligosaccharides differing by the type of Neu5Aca-Gal linkage and by the
structure of the more distant parts of the oligosaccharide chain. Influenza viruses isolated from
terrestrial poultry differed from duck viruses by an enhanced binding to sulfated and/or fucosylated
Neu5Aca2-3Gal-containing sialyloligosaccharides. Most of the poultry viruses tested shared a high
binding affinity for the 6-sulfo sialyl Lewis X (Su-SLe¥). Efficient binding of poultry viruses to Su-SLex
was often accompanied by their ability to bind to Neu5Aca2-6Gal-terminated (human-type)
receptors. Such a dual receptor-binding specificity was demonstrated for the North American and
Eurasian H7 viruses, HIN2 Eurasian poultry viruses, and HI, H3 and H9 avian-like virus isolates

from pigs.

Conclusion: Influenza viruses of terrestrial poultry differ from ancestral duck viruses by enhanced
binding to sulfated and/or fucosylated Neu5Aca2-3Gal-terminated receptors and, occasionally, by
the ability to bind to Neu5Aca2-6Gal-terminated (human-type) receptors. These findings suggest
that the adaptation to receptors in poultry can enhance the potential of an avian virus for avian-to-

human transmission and pandemic spread.
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Background

The recent pandemic threat caused by the widespread cir-
culation of H5N1 avian influenza viruses and their occa-
sional transmission to humans as well as human
infections caused by chicken HON2, H7N7 and H7N3
viruses highlighted the need for a detailed study of host
restriction mechanisms of influenza viruses. Numerous
studies support the concept that alteration of the receptor
specificity of an avian virus is essential for its transmission
into humans as well as for human-to-human transmis-
sion and pandemic spread (reviewed in ref. [1,2]).

The history of research into the receptor binding pheno-
types of influenza viruses can be divided into two periods:
before and after 1997 when first human infections with
chicken H5N1 viruses were documented. Before 1997, it
was established that human influenza viruses recognize
Neu5Aca2-6Gal-terminated receptors, avian viruses rec-
ognize Neu5Aca2-3Gal-terminated receptors while swine
viruses recognize both of them [3-8]. It was shown that
the receptor-binding site (RBS) of the hemagglutinin
(HA) of avian viruses is evolutionally very stable. In addi-
tion to eight amino acids forming the HA RBS, which are
conserved in all influenza A viruses (positions 97, 98, 134,
139, 153, 183, 184 and 195; H3 numbering is used here
and throughout the paper), there are six more amino acids
conserved in HAs of duck viruses (positions 138, 190,
194, 225, 226 and 228), and these are positions where
human HAs are different from duck viruses [7]. Virus
receptor binding specificity was found to correlate with
the level of expression of relevant sialic acids determi-
nants on the target cells of different host species. Thus,
epithelial cells of human airway epithelium were shown
to express high amounts of Neu5Aca2-6Gal-terminated
sialyloligosaccharides, duck intestinal epithelium pre-
dominantly contains Neu5Aca2-3Gal-terminated recep-
tors while swine tracheal epithelium contains both
receptor types [8,9]. It was hypothesized that alteration of
receptor specificity of avian viruses in some intermediate
host, such as swine, might facilitate their transmission to
humans [10].

After 1997, it became clear that avian H5N1 viruses are
capable of replicating in humans [11,12] despite their
avian-virus-like preference for Neu5Aca2-3Gal-contain-
ing receptors and lack of binding to human-type receptors
[13]. It was shown afterwards that human airway epithe-
lial cells express 2-3-linked sialic acid receptors with a
density sufficient for the entry and replication of avian
viruses [14,15].

Furthermore, a Eurasian lineage of poultry HIN2 viruses
was discovered, which recognized Neu5Aca2-6Gal-termi-
nated sialyloligosaccharides, thus indicating that some
avian influenza viruses may display a human-virus-like
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receptor specificity [16-18]. It was also demonstrated that
chicken and quail intestinal cells contain both Neu5Aco2-
3Gal and Neu5Aca2-6Gal sialyloligosaccharides, in con-
trast to duck cells that contain only Neu5Aca2-3Gal [19-
23].

Although the Neu5Aca2-3Gal receptor specificity is
shared by the majority of avian viruses, viruses adapted to
different avian species can differ in their ability to recog-
nize the third saccharide and more distant moieties of
Neu5Aca2-3Gal-terminated receptors. For example, duck
viruses of various subtypes preferentially bound to glyco-
protein  O-chain trisaccharide Neu5Aca2-3GalB1-
3GalNAca, whereas H5N1 chicken viruses preferred
receptors with inner [-N-acetylglucosamine moiety,
Neu5Aca2-3GalB1-4GIcNAcB [20]. Sulfation of the sac-
charide core produced no effect on binding of duck
viruses, whereas chicken and human viruses isolated in
1997 in Hong Kong demonstrated an extraordinarily high
affinity for sulfated trisaccharide Neu5Aco2-3Galp1-4(6-
HSO;)GlcNAc (Su-3'SLN) [24,25].

In the present study, we characterized the receptor-bind-
ing specificity of a broad set of influenza A viruses from
wild aquatic birds, poultry, pigs and horses.

Results

Receptor-binding specificity

To determine the receptor-binding specificity of avian and
mammalian influenza viruses, we tested their binding to
9 distinct polymeric glycoconjugates (see Fig. 1 and Table
1 for structural formulas and abbreviations). One of the
glycoconjugates harboured 6-linked sialyloligosaccha-
ride, Neu5Aca2-6Galp1-4GlcNAc (6'SLN). The oligosac-
charide parts of the other glycopolymers shared the same
terminal Neu5Aca2-3Gal moiety but differed: (i) by the
type of the bond between galactose and the next sugar res-
idue (B1-3 or B1-4), (ii) by the nature of this residue
(GleNACcB or GalNAca), and (iii) by constituents at differ-
ent positions on the GlcNAc ring (fucose or/and sulfo
group). All studied oligosaccharide structures have been
found in natural glycoproteins or glycolipids [26]. Virus
binding to glycoconjugates was determined in a competi-
tive solid-phase assay and expressed in terms of binding
affinity constants (Fig. 2).

Each of the tested viruses bound SLec, Su-SLec and STF
with the same affinity and none of the viruses discrimi-
nated between SLex and SLea. We, therefore, do not show
here the binding data for Su-SLec, STF and SLea. The pat-
terns of viral binding to the panel of receptor analogues
varied significantly among viruses of different subtypes
and host species (Fig. 2), however, several distinctive
groups of viruses with typical receptor binding pheno-
types could be recognized as described below.
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Molecular models of sialyloligosaccharides. The models depict sialyloligosaccharide parts of glycopolymers that were
tested for their binding to influenza viruses. Corresponding structural formulas are given in the Table |. The figures were gen-
erated using Discovery Studio ViewerPro5.0 software (Accelrys Inc.).

Viruses of various subtypes isolated from wild ducks

These viruses displayed the highest binding affinity for
glycoconjugates with (1-3) linkage between Neu5Aco.2-
3Gal disaccharide fragment and the next GlcNAc residue,
i.e., SLe¢, Su-SLecand STF. Other characteristic features of
duck viruses were their low affinity for fucosylated sialylo-
ligosaccharides SLe2 and SLe*, nearly equal affinity for sul-
fated and non-sulfated sialyloligosaccharides, and a lack
of appreciable binding to 6'SLN.

Table I: Structure of sialyloligosaccharide parts of
glycopolymers

Sialyloligosaccharide Abbreviation

Neu5Aca2-3GalB 1-4GIcNAcB 3'SLN
Neu5Aca2-3Galf 1-4(6-HSO;)GIcNACS Su-3'SLN
Neu5Aca2-3Galf I-4(Fuca | -3)GIcNAcB SLex
Neu5Aca2-3Galf I-4(Fuca | -3)-(6-HSO;)GIcNACB Su-SLex
Neu5Aca2-3Galf 1-3GIcNAcB SLec
Neu5Aca2-3GalfB 1-3(6-HSO;)GIcNACS Su-SLec
Neu5Aca2-3Galf3 1-3GalNAca STF
Neu5Aca2-3Galf -3 (Fuca l-4)GIcNACcB SLe2
Neu5Aca2-6Galf 1-4GlcNAc 6'SLN

Viruses with H6 HA

Five viruses with H6 HA tested in this study were isolated
from different avian species (turkey, shearwater, teal,
chicken and gull). Unlike typical duck viruses, all H6 viral
isolates efficiently bound to fucosylated sialyloligosaccha-
rides SLexand SLea.

Viruses with H7 HA

Viruses of H7 subtype from two evolutionary lineages
were tested: 1) American avian H7N2 viruses and closely
related human isolate A/New York/107/03 (H7N2) [27],
and 2) Eurasian H7N7 human isolates that were transmit-
ted to humans from infected poultry during the 2003 out-
break in the Netherlands [28]. Viruses from both lineages
showed enhanced binding to sulfated sialyloligosaccha-
rides with the Galf1-4GIcNAcB core. The American
viruses displayed the highest affinity for Su-3'SLN,
whereas the H7N7 viruses from the Netherlands had par-
ticularly high affinity for Su-SLex. It was found unexpect-
edly that all H7 viruses tested displayed moderate binding
affinity for human-type receptor 6'SLN (Fig. 2).

H9N?2 viruses
The HIN2 viruses tested could be arbitrarily separated
into three groups, North American viruses and distantly
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Sialylglycoconjugate
Virus
FSLN |Su-3'SLN| SL¢' |susSLe'| sLe | 6SLN
Duck viruses
IDuck /Hong Kong/278/78 H2N9 20 10 >50 >50
IDuck/Nanchang/2-0485/00 H2N9 20 10 >50 >50
IDuck/Buryatia/652/88* H3N8 10 10 50 50
Mallard/New York/670/78 H4N6 4 8 100 >200
Duck /Buryatiya/1905/00* H4N6 20 20 100 100
IDuck/Primorie/3628/02* HI9N2 10 8 100 30
Mallard/Netherlands/02/00 HI10N4 20 7 >50
H6
Turkey/Massachusetts/65 H6N2 20 30
Shearwater/Australia/1/72 H6NS 20 30
[Teal/Hong Kong/W312/97 H6N1 50 >50
IChicken/New York/13237/98 | H6NS8 7 10
IGull/Moscow/3100/06 H6N2 5 5
H7
[Turkey/Virginia/4529/02 H7N2 2 20 4 10 200
|Avian/New York/273874/03 H7N2 10 30 8 20 500
(Chicken /NJ/294598-12/04 H7N2 5 20 5 5 200
Chicken /Delaware/296763/04 | H7TN2 15 30 15 20 200
New York/107/03 H7N2 10 >100 15 20 200
INetherlands/219/03 H7N7 4 1 5 5 500
INetherlands/230/03 H7N7 4 1 5 5 500
INetherlands/231/03 H7N7 4 1 5 5 500
HI9N2
IGoose/Minnesota/5773/80 HON2
Turkey/Wisconsin/1/66 HIN2
Turkey/Minnesota/38391-6/95 | HON2
[Pheasant/Wisconsin/1780/88 | HON2

IChicken/New Jersey/12220/97 | HON2

Chicken/Korea/96323/96 HI9N2
[Hong Kong/1073/99 HION2
Quail/Hong Kong/G1/97 HON2
IChicken/Hong Kong/FY20/99 | HON2
IDuck/Hong Kong/Y?280/97 HON2
IChicken/Hong Kong/G9/97 HI9N2
IChicken/Hong Kong /SF3/99 | HON2
[Hong Kong/2108/03 HION2
Swine
Swine/Hong Kong/9/98 HON2
Swine/Finistere/2899/82* HINI1
Swine/France/80* HINI1
Swine/Kazakhstan/48/82* H3N6
Equine
IEquine/Kentucky/5/02 H3N8
IEquine/Ohio/1/03 H3N8
ICanine/Florida/43/04 H3N8
H5N1

IChicken/ Hong Kong /220/97 | H5N1
Chicken/Vietnam/NCVD11/03| H5N1

Human pandemic viruses
[USSR/039/68 H3N2
(Canada/228/68 H3N2

Figure 2

Binding affinity constants of virus complexes with sialylglycopolymers. The constants were determined as described
in the Methods and were expressed in uM of sialic acid. Higher values of constants correspond to lower binding affinities. The
data were averaged from 3 sets of experiments. Standard errors did not exceed 50% of the mean values. Viruses labelled with
asterisk were kindly provided by Dr. S. Yamnikova, the Ivanovsky Institute of Virology, Moscow, Russia. Colours depict relative
levels of binding for each individual virus: red — maximal binding; yellow — good binding; pale cyan — weak binding; blue — no
detectable binding.
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related virus A/Chicken/Korea/96323/96 [29] and two
evolutionary lineages of poultry viruses from Southeast
Asia, G1 and G9 [16-18].

Receptor-binding affinity of A/Goose/Minnesota/5773/
80 and A/Turkey/Wisconsin/1/66 was similar to that of A/
Duck/Primorie/3628/02 (H9N2) and duck viruses of
other subtypes: they preferentially bound to SLe¢ and
bound poorly to fucosylated sialyloligosaccharides. Other
North American viruses such as A/Chicken/New Jersey/
12220/97 and A/Pheasant/Wisconsin/1780/88 showed
high binding affinity for SLe?, SLex and Su-SLex. A/
Chicken/Korea/96323/96 had an increased affinity for
sulfated sialyloligosaccharides Su-3'SLN and Su-SLex.
None of these viruses bound 6'SLN.

In contrast to North American viruses, Asian isolates from
G1- and G9- lineages bound to 6'SLN. The binding pat-
tern of the human isolate A/Hong Kong/1073/99 (H9N2)
resembled that of pandemic human viruses A/USSR/039/
68 and A/Canada/228/68 (see Fig. 2, bottom lines): all
these three viruses strongly bound to 6'SLN and did not
appreciably bind to Neu5Aca2-3Gal-containing oligosac-
charides. A/Quail/Hong Kong/G1/97 demonstrated high
affinity for 6'SLN, SLex and Su-SLex and did not bind to
any of non-fucosylated Neu5Aca2-3Gal-containing recep-
tors. All other Asian poultry viruses tested displayed mod-
erate binding to 6'SLN, bound much stronger to sulfated
receptors Su-3'SLN and Su-SLe*and did not bind at all to
3'SLN, SLe¢, SLeX, and Su-SLec.

Swine viruses

Four viruses isolated from pigs were tested. A/Swine/
Hong Kong/9/98 belonged to the G9 clade of HIN2
viruses, A/Swine/Finistere/2899/82 and A/Swine/France/
80 represented the European avian-like swine virus line-
age and A/Swine/Kazakhstan/48/82 was a sporadic avian-
like H3NG6 isolate. A common feature of these viruses was
their high affinity for Su-SLe* and a moderate affinity for
6'SLN.

Equine viruses

Equine H3N8 viruses including the equine-like canine
isolate A/Canine/Florida/43/2004 [30] showed a strong
binding affinity for Neu5Aca2-3Gal receptors, preferring
sulfated ones, Su-3'SLN or Su-SLex.

H5NI Asian viruses

Viruses of this group were extensively analyzed in our pre-
vious studies [24,25]. Two typical chicken isolates were
tested here for a comparison with other poultry viruses.
Both A/Chicken/Hong Kong/220/97 and A/Chicken/Viet-
nam/NCVD11/03 revealed increased affinity for Su-
3'SLN. The latter virus in addition showed a high affinity
for Su-SLex.

http://www.virologyj.com/content/5/1/85

Analysis of HA amino acid sequences and molecular
modelling of the complexes of Su-SLe* with H3, H7 and H9
HA

The characteristic feature of the duck viruses tested herein
was their poor binding to fucosylated sialyloligosaccha-
rides (Fig. 2, upper part). This receptor-binding pheno-
type agreed with that described earlier for a variety of
viruses from wild ducks [20,24,31]. In order to under-
stand the molecular basis of this phenotype, we modelled
a putative disposition of the fucosylated receptor Su-SLe*
in the receptor-binding site of the HA of Duck/Ukraine/1/
63 (H3N8) [32]. The modelling predicted that the fucose
moiety would come into a significant sterical conflict with
the side chain of Trp222 (Fig 3). We next compared the
HA sequences of more than 400 duck influenza viruses of
H1, H2, H3, H4, H5, H8, H9, H10, H11 and H14 sub-
types available from the Genbank. All of these viruses had
a bulky amino acids (Arg, Lys, Trp, Leu, or Gln) in posi-
tion 222 of the HA. We suggest on this basis that partial
overlap of the fucose moiety with the bulky amino acid in
position 222 could be a universal mechanism that reduces
the capability of duck viruses to bind fucosylated recep-
tors.

Our analysis of 68 published H6 HA sequences revealed
that 67 of them have Ala222. This finding suggests that a
relatively good binding of H6 viruses to fucosylated sialy-
loligosaccharides SLexand SLe? (Fig. 2) could be explained
by a lack of interference between the fucose moiety and
the short side chain of the alanine in position 222 of the
HA. Essential role of amino acid in position 222 in the
binding of fucosylated receptors was also supported by
the comparison of HA sequences of the HON2 viruses, A/
Goose/Minnesota/5773/80 and A/Chicken/New Jersey/
12220/97 (Fig. 2 and Fig. 4). The latter virus had His222
and bound SLe* 100-times better than the former virus
(Leu222).

The high binding affinity of H7 viruses to sulfated sialylo-
ligosaccharides suggested that the sulfo group interacts
with some charged amino acid residue in the receptor-
binding site. To test this possibility, we modelled poten-
tial contacts of Su-SLex with the receptor-binding pocket
of avian H3 and H7 HAs [32,33]. In the case of H3 duck
virus, the sulfo group faced towards solution and did not
form obvious direct contacts with the protein. However,
in the case of the H7 HA, the sulfo group of Su-SLex was
located in a close proximity to the side chain of Lys193,
which is highly conserved among viruses with H7 HA (Fig
3). This finding suggests that enhanced affinity of H7
viruses for Su-3'SLN and Su-SLe* is due to favourable
charged interactions between the sulfo group of the recep-
tor and amino group of Lys193. The same mechanism is
likely responsible for the high affinity for Su-3'SLN of
H5N1 (Gambaryan et al., 2004, 2006) and H3N8 equine
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Duck H3

Figure 3

Models of complexes of H3, H7 and H9 hemaggluti-
nins with Su-SLe*. The models were generated as
described in the Methods using the crystal structures of the
HAs of the viruses A/Duck/Ukraine/1/63 (H3N8) [32], A/
Turkey/ltaly/02 (H7N1) [33] and A/Swine/Hong Kong/9/98
(H9N2) [37]. The fucose moiety and the sulfo group of Su-
SLex are shown as mesh surfaces. Amino acid residues
described in the text are numbered.

viruses (Fig. 2) since viruses of both these groups have
lysine in position 193.

South-eastern Asian HIN2 viruses have multiple amino
acid substitutions in the receptor-binding region of the
HA, most notably, the mutation Gln226Leu [34] (Fig. 4).
The typical human-virus-like receptor specificity of A/
Hong Kong/1073/99 (HIN2) is in a good agreement with

http://www.virologyj.com/content/5/1/85

the notion that a single GIn226Leu replacement shifts the
receptor specificity from recognition of Neu5Aca2-3Gal
to recognition of Neu5Aca2-6Gal receptors [35,36]. A/
Quail/Hong Kong/G1/97 (HIN2) differs from A/Hong
Kong/1073/99 (H9N2) by the Gly225Asp substitution
(Fig. 4) that markedly enhances the affinity of this virus
for fucosylated 3-linked receptors SLex and Su-SLe* and
leads to a rather an unusual receptor-binding phenotype

(Fig. 2).

The HIN2 viruses of G9-lineage harbour substitutions
GIn226Leu and Glul190Ala/Thr/Val in the HA [18,34]
(Fig. 4). Viruses with Ala or Thr in position 190 bound Su-
3'SLN and Su-SLex* with the highest affinity and demon-
strated moderate affinity for 6'SLN (Fig. 2). As these
viruses did not noticeably bind to Su-SLe¢, specific orien-
tation of the sulfo group rather than its negative charge
alone seems to be essential for the binding. We used the
crystal structure of the HA of A/Swine/Hong Kong/9/98
(H9N2) (GY-lineage) in complex with 3-linked receptor
[37] for the modelling of H9 HA interactions with Su-SLex
(Fig. 3). Due to the amino acid substitutions in positions
226 and 190 of the H9 HA, the conformation of 3-linked
galactose in this complex differs from that in the H3 avian
HA [32,37], leading to corresponding differences in the
putative disposition of Su-SLe* (compare H3 and H9 com-
plexes in Fig. 3). In the H9 HA, the fucose moiety shifts
upwards resolving the steric interference with amino acid
in position 222, whereas the sulfo group shifts down-
wards and fits into a cavity formed by amino acids in posi-
tions 190 and 186 and by the solvent water molecules
bound to residues 98, 228 and 227 (PDB:1ISD[37]). This
could explain why the substitutions GIln226Leu and
Glu190Val in the H9 HA, that increased virus affinity for
Neu5Aca2-6Gal, at the same time significantly enhanced
its affinity for sulfated Neu5Aca2-3Gal-containing recep-
tors, Su-3'SLN and Su-SLex.

Discussion

Although almost all avian viruses use the same terminal
disaccharide Neu5Aca2-3Gal as receptor, the evolution of
distinct virus lineages adapted to distinct avian species
(wild ducks, gulls, or terrestrial poultry) has led to special-
ized abilities to recognize longer oligosaccharide chains.
Thus, duck viruses have the highest affinity for SLec and
STF (Neu5Aca2-3GalB1-3GalNAca). We demonstrated
earlier that duck viruses bind strongly to gangliosides
from duck intestine as well as to GD1a ganglioside, which
is terminated by Neu5Aca.2-3GalB1-3GalNAcB[7,19]. It is
possible that gangliosides with this termination serve as
functional receptors of influenza viruses in the duck intes-
tine.

Our present study indicated that receptor specificity of
viruses from different lineages adapted to quail and
chicken differed from that of wild duck viruses. Sulfated
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* 180
Duck/Alberta/321/88
Duck/Primorie/3628/02
Goose/Minnesota/5773/80

Turkey/Wisconsin/1/66 N.H..... RE.........
Turkey/Minnesota/38391/95 ....... T....V.ooo...
Chicken/N.Jersey/12220/97 ..., Revewunnnn
Chicken/Korea/96323/96 ....... DW..ovvennen..
Hong Kong/1073/99 ........ R..S...V....
Quail/Hong Kong/G1/97  ........ R..S...V....
Chicken/Hong Kong/G9/97  ........ R..S.......
Chicken/Hong Kong/FY20/99 ........ Revewnnn,
Duck/Hong Kong/Y280/97  ........ Revewrwnnnn
Hong Kong/2108/03 ....... R..S.......
Swine/Hong Kong/9/98 ........ R..S.......

Figure 4

http://www.virologyj.com/content/5/1/85

* 200 * 220 *

ODAQYTNNEGKNILFMWGIHHPPTDTEQTNLYKKADTTTSVTTEDINRTFKPVIGPRPLVNGQQGRIDYY
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........ ND....T......ccve o Moo Pocale ool
...................................... H...8.......
........ A e Y
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...... A.....TRT...... A .. i Lo,
...... A.....TRT......A..........Lo..o L L N

...... T.....TRT......A..........Lo....L...L.......
...... Vo....TRT.............A. . ... ... Lol
...... V.....TRT...... ... i .LH. .. ...

Partial HA amino acid sequences of HIN2 viruses. The sequences were obtained from GenBank. Differences with
respect to the top sequence are shown. Amino acids in positions 190, 222, and 226 are highlighted. The figure was generated

with GeneDoc 2.6 software [50].

and fucosylated 3'SLN is a suitable receptor for most of
these poultry viruses. It was shown recently that bi-anten-
nary a2-6/3 sialylated glycans with Galf1-4GlcNAc core
are major sialylated N-glycans expressed by intestinal epi-
thelial tissues in both chicken and quail [23]. This fact is
in accord with preferential binding of quail and chicken
viruses to sialyloligosaccharides with GalB1-4GlcNAcB
core.

Gull viruses appear to be adapted to fucosylated receptors,
such as SLex[31]. We suggested earlier that the presence of
glycine in HA position 222 of H13 and H16 viruses is
essential for this binding phenotype [38]. In this study, we
found that all tested H6 viruses, similarly to gull viruses,
demonstrated enhanced affinity for SLe2 and SLexand that
alanine in position 222 of the H6 HA is likely to play an
essential role in this specificity. Since almost all
sequenced H6 HA have Ala222, viruses of this subtype
should be able to recognize receptor determinants that are
optimal for duck (SLec), gull (SLex) and chicken (Su-SLexX)
viruses. This feature of H6 viruses would agree with their
known promiscuous host range [39]. Some American H9
poultry viruses with substitution in position 222 showed
receptor binding phenotype that was similar to that of
H13, H16 and HG6 viruses. It could be speculated that
mutations in position 222 that improve sterical accom-
modation of the fucose moiety could represent one gen-
eral pathway for adaptation of duck viruses to fucosylated
receptors present in gulls and chickens.

Asian H5N1 viruses, H7 poultry viruses and equine H3N8
viruses realized another pathway of adaptation to recogni-
tion of the Su-SLexdeterminant via the favourable electro-
static interactions between the sulfo group and the amino
group of Lys193.

One more pathway of viral adaptation to Su-SLe* can be
achieved through a substitution of conserved glutamic
acid in the HA position 190. Importantly, this substitu-
tion that leads to enhanced binding to Su-SLex is often
accompanied by the enhanced viral binding to the
human-type receptor 6'SLN. Thus, high affinity for Su-
SLex and moderate affinity for 6'SLN was detected in this
study for G9-like HIN?2 viruses, and previously for HIN1
swine [40] and human [41] viruses. H7 viruses with high
affinity for Su-SLe* also showed detectable binding to
6'SLN (Fig. 2).

It is not clear whether the ability of H7 and H9 poultry
viruses to bind to 6'SLN provides them with some evolu-
tionary advantage. For example, the binding of these
viruses to 6'SLN does correlate with the presence of 6'SLN-
containing receptors in epithelial tissues of gallinaceous
birds [19-23]. Alternatively, the ability of poultry viruses
to bind to 6'SLN could be an accidental consequence of
their adaptation for the binding to Su-SLe* due to some
sterical similarity between Su-SLex and 6'SLN in the
regions of Neu5Ac-Gal glycosidic linkage and of the NAc-
moiety of the GlcNAc residue (Fig. 1).

The binding data (Fig. 2) show that the receptor specificity
of poultry H5, H7, and H9 viruses is similar to that of
equine and avian-like swine viruses. If sulfated and fuco-
sylated sialyloligosaccharides are present in the target cells
of both terrestrial poultry and mammals, the adaptation
of aquatic bird viruses to poultry could facilitate their rep-
lication in mammals, including humans.

Conclusion

It is generally believed that alteration of the receptor spe-
cificity is a prerequisite for the highly effective replication
and human-to-human transmission which characterize
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pandemic influenza viruses [1,2,42]. Here we found that
several independent lineages of poultry influenza viruses
differ from their precursors in aquatic birds by enhanced
binding to 6-sulfo sialyl Lewis X and that this binding spe-
cificity is accompanied by the ability of the virus to bind
to human-type receptor 6'SLN. We therefore suggest that
the adaptation to Su-Sle* receptor in terrestrial poultry
could enhance the potential of an avian virus for avian-to-
human transmission and pandemic spread.

Methods

Materials

Oligosaccharides conjugated with polyacrylamide (~30
kDa) were synthesized from spacered sialyloligosaccha-
rides  (spacer = -OCH2CH2CH2NH2 or -
NHCOCH2NH2) and poly(4-nitrophenylacrylate) hav-
ing m.w. 30 kDa by the method described earlier [43,44].
Spacered oligosaccharides were synthesized as described
previously [45-47].

Viruses

The majority of viruses in the study were from the reposi-
tory of the Influenza Division, CDC, USA; some isolates
were from the collection of the D.I. Ivanovsky Institute of
Virology, Moscow. Viruses were grown in 9-day-old
embryonated chicken eggs and were inactivated by treat-
ment with beta-propiolactone as described previously
[13]. The allantoic fluids were clarified by low-speed cen-
trifugation; the viruses were pelleted by high-speed cen-
trifugation, resuspended in 0.1 M NaCl, 0.02 M Tris buffer
(pH 7.2) containing 50% glycerol, and stored at -20°C.

The binding daffinity of influenza viruses for
sialylglycoconjugates

Receptor specificity of influenza viruses was evaluated in
a competitive assay based on the inhibition of binding to
solid-phase immobilized virus with bovine fetuin labelled
with horseradish peroxidase [48]. The competitive reac-
tion was performed at 2-4 oC for 30 min in PBS with
0.01% of Tween-20; 0.05% of BSA and 3 uM of the siali-
dase inhibitor 4-amino-Neu5Ac-en. The data were
expressed in terms of affinity constants (K,4) formally
equivalent to the dissociation constants of virus-receptor
complexes. For the calculation of the constants, concen-
tration of the sialic acid residues in the solution was used.
Each set of experiments presented in the Fig. 2 was
repeated three-four times with similar results. Data were
averaged from 3 sets of experiments.

Molecular models

Atomic coordinates of SLex (PDB:2KMB) [49], H7 HA
(PDB:1TI8) [33], H9 HA (PDB:1JSD) [37] and H3 and H9
HA complexes with NeuAca2-3Gal-containing pentasac-
charide LSTa (PDB:1MQM and PDB:1]SH) [32,37] were
obtained from Brookhaven Protein Data Bank. The

http://www.virologyj.com/content/5/1/85

molecular models were generated using DS ViewerPro 5.0
software (Accelrys Inc.).

The model of Su-SLexwas constructed on the basis of SLex
structure (PDB:2KMB), by replacing the hydrogen atom of
the 6-OH group of GlcNAc by HSO; group.

The models of Su-SLe* in the receptor-binding sites of H3
and H9 HA were made by superimposing the galactose
residue of the Su-SLe* over the galactose residue of LSTa.
The model of Su-SLex in the receptor-binding site of H7
HA was generated by superimposing the protein chain of
the H3 HA complex with Su-SLe* over the protein chain of
H7 HA (PDB:1TI8). The OH groups of Tyr98, SG atoms of
Cys139, CZ3 atoms of Trp153, CD atoms of Glu190 and
CA atoms of Tyr 195 were used to align two proteins.
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