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Abstract
Myxoma virus (MYXV), a leporide-specific poxvirus, represents an attractive candidate for the
generation of safe, non-replicative vaccine vector for non-host species. However, there is very little
information concerning infection of non-laboratory animals species cells with MYXV. In this study,
we investigated interactions between bovine cells and respectively a wild type strain (T1) and a
vaccinal strain (SG33) of MYXV. We showed that bovine KOP-R, BT and MDBK cell lines do not
support MYXV production. Electron microscopy observations of BT-infected cells revealed the
low efficiency of viral entry and the production of defective virions. In addition, infection of bovine
peripheral blood mononuclear cells (PBMC) occurred at a very low level, even following non-
specific activation, and was always abortive. We did not observe significant differences between the
wild type strain and the vaccinal strain of MYXV, indicating that SG33 could be used for new bovine
vaccination strategies.

Background
Until now, most of the ruminant vaccines use attenuated
strains of pathogens, and for that reason, naturally
infected and vaccinated animals cannot easily be differen-
tiated. Development of recombinant vaccines for rumi-
nant species would help to implement vaccine policies.
The development of poxviruses as vectors for producing
recombinant vaccines is well documented [1-6]. Although
vaccinia virus was the first and most extensively devel-
oped poxvirus vector, concerns over its use in immuno-
compromised persons and its broad host-range specificity
[7] had led to search for alternative poxviruses which
might prove more suitable vectors. Myxoma virus

(MYXV), a leporipoxvirus causing myxomatosis, a highly
lethal disease of European rabbit, could be an interesting
tool for animals vectored vaccination. MYXV attenuated
strains were shown to be efficient vaccine vector to vacci-
nate its natural host against both myxomatosis and rabbit
viral hemorrhagic disease [8,9]. Recently, MYXV was suc-
cessfully developed as a non replicative vector to vaccinate
cats against feline calicivirus [10,11]. However, for each
target species, evaluation of host restriction is of impor-
tance for the development of safe and potent vaccine vec-
tors. MYXV is reported to be restricted to rabbits in vivo
[12] and to replicate in vitro in some non natural host cell
lines such as simian BGMK and some cancer cells [13]. No
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information concerning interactions between MYXV and
bovine cells is available yet. In this study, we characterized
the infection of bovine cell lines and bovine peripheral
blood mononuclear cells (PBMC) with MYXV. By com-
paring two different MYXV strains (a wild-type strain (T1)
and a cell-cultured attenuated vaccinal strain (SG33) [14])
we verified the stability of the viral tropism in vitro.

Findings
Three bovine cell lines were tested for MYXV permissivity:
KOP-R cells (RIE 244, CCLV Federal Research Centre for
Virus Diseases of Animals, Island Riems), BT cells (ATCC
CRL-1390) and MDBK cells (ATCC CCL-22). Each cell
line was infected at a multiplicity of infection (m.o.i.) of
1 and cultured for 72 h. Then, infected cells were lysed by
three freeze/thaw cycles. One fifth of each cell lysate was
inoculated to new cells and further incubated for 72 h.
Virus productions were determined by serial dilution-

titration of each cell lysate on permissive rabbit RK13 cells
(ATCC CCL-37) (Figure 1A).

In RK13 cells, used as positive control, we observed a high
virus titer maintained over the three passages for both
MYXV strains (Figure 1A). In contrast, in the bovine cell
lines, viral titers decreased during the three passages for
both T1 and SG33 (Figure 1A). After three passages we
measured a low virus titer for KOP-R, BT and MDBK indi-
cating that both strains are not able to spread over serial
passages.

To confirm these results, we infected the bovine cell lines
or RK13 cells with T1 or SG33 recombinant viruses
expressing the LacZ reporter gene driven by the late poxvi-
ral P11 promoter. Figure 1B shows the results obtained
with the T1 recombinant virus. In bovine KOP-R and BT
cell lines, at m.o.i. 0.1 or 1, only sparse infected cells were
observed (β-galactosidase positive cells), whereas in

Permissivity of bovine cell lines for myxoma virusFigure 1
Permissivity of bovine cell lines for myxoma virus. Bovine cells were maintained in DMEM (KOP-R and BT) or MEM 
(MDBK) supplemented with 10 % foetal calf serum (FCS). A. Virus production in different bovine cell lines over three passages. 
Cells were first inoculated with either T1 (top) or SG33 (bottom) MYXV strain at a m.o.i. of 1, washed, cultured in DMEM, 5 
% FCS for 3 days and frozen (P1). In subsequent infections, 1/5 of the material from the previous frozen culture was used for 
infection (P2 and P3). Titers were determined by serial dilution-titration on RK13 cells. The values correspond to a mean of at 
least two independent experiments. Error bars correspond to the standard error of the mean. B. Rabbit and bovine cells were 
infected with the T1-TK::LacZ (m.o.i. of 0.1 and 1). Twenty-four hours p.i., they were fixed with 2.5 % glutaraldehyde for 15 
minutes at room temperature and stained with 2 mg/ml X-Gal in 2 mM MgCl2, 5 mM K4Fe(CN)6.3H2O, 5 mM K3Fe(CN)6 in 
PBS for 4–10 hours and observed by microscopy. Microscope: Leica; Magnification: 100.
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MDBK cells, no β-galactosidase labelled cell was present,
indicating no expression of late viral protein. However,
early viral proteins could be detected (data not shown).
Similar results were observed using SG33 (data not
shown).

We next performed an electron microscopy study in
MYXV infected BT cells (Figure 2). BT cell monolayers
were infected with T1 at a m.o.i. of 8. Five, 8, 12 and 24
hours following infection, cells were fixed and processed
for electron microscopy as previously described [15]. We
observed a lot of virions adsorbed on the cell surface,
throughout the kinetic (Figure 2A, and not shown). Viral
penetration appeared to be less efficient than with permis-
sive cells [15]. Five hours post-infection (p.i.), we could
observe very rare uncoating figures in the cytoplasm and
large areas free from organites, containing electron-dense
particles (Figure 2B). The first immature virions (IV) could
be observed from 12 h p.i. only, 4 hours later than in per-
missive cells [15]. Most of these IV had an atypical elec-
tron-dense aspect characterized by an irregular and not
well-defined membrane (Figure 2C). Intracellular envel-
oped virions (IEV) (Figure 2D) could rarely be observed
and no intracellular mature virion (IMV) was detected.
Enveloped mature virions (CEV, EEV) release was not
detected. These results suggest that in addition to poor
penetration efficiency, the late steps of viral maturation
are impaired in BT cells.

To evaluate MYXV infection in blood primary bovine
cells, peripheral blood mononuclear cells (PBMC) were
infected. Bovine blood was collected in EDTA tubes,
diluted (1:2), loaded on a density gradient (FicollPaque
Plus, Amersham) and centrifugated at 900 g for 20 min-
utes. PBMC were then harvested, washed in PBS, recov-
ered by centrifugation at 870 g for 10 minutes and
cultured. To detect infected cells by flow cytometry, we
used a recombinant SG33 virus expressing the enhanced
green fluorescent protein (GFP) under the control of
strong early/late vaccinia virus P7.5 promoter. The GFP
encoded gene was inserted into the M11L/MGF locus. We
also used the T1-Serp2-GFP recombinant virus which
expresses the fused protein Serp2-GFP.

Resting PBMC were infected with T1-Serp2-GFP or SG33-
GFP at a m.o.i. of 1 (Figure 3A). Cells were collected 16 h
p.i., and infection levels were determined by counting liv-
ing GFP-positive cells (Figure 3A). We observed that only
a small fraction of bovine PBMC was susceptible to MYXV
infection. An average of 1.2 % and 0.8 % of GFP-positive
resting cells was detected for T1-Serp2-GFP and SG33-GFP
respectively (Figure 3B). As activation may be required to
allow infection by poxviruses [16], chemically-activated
bovine PBMC were also infected at the same m.o.i.. The
percentage of GFP-positive cells remained low following
activation, as only 2.4 % and 5.1 % for T1-Serp2-GFP and
SG33-GFP of positive cells were detected respectively (Fig-
ure 3B). The infection level remained below 5 % with an
m.o.i. up to 10 (data not shown). In contrast to the infec-
tion level in activated rabbit PBMC (about 50 % of
infected cells) (data not shown), activation have very low
effect on bovine leukocytes infection with MYXV.

In activated bovine PBMC, T1 or SG33 production was
analyzed by infection at a m.o.i. of 1, and virus titration
on RK13 cells (Figure 3C). No significant increase of viral
titers between 0 h and 72 h p.i. was noticed indicating that
activated bovine PBMC are not permissive to MYXV infec-
tion.

Conclusion
In this study, we investigated the interactions between
bovine cells (cell lines and PBMC) and MYXV wild type
(T1) strain or vaccinal (SG33) strain. In bovine cell lines,
serial viral passages analysis and infection with both T1
and SG33 expressing LacZ gene showed that these cells
failed to support spread of either MYXV strain. Electron
microscopy study of BT-infected cells enabled us to iden-
tify at least two blocking events, the first one involving
virus entry. Indeed, we observed many viral particles
adsorbed on the cell surface throughout the experiment
but very few infected cells. This result indicates that MYXV
can bind to the cell surface, but enters the cells with low
efficiency. The second blocking event involves the final

Electron microscopy observations of MYXV BT infected cellsFigure 2
Electron microscopy observations of MYXV BT 
infected cells. A. Numerous virions are still adsorbed on 
the cell surface 8 h p.i.. B. Large cytoplasmic area without 
organite containing dense particles (5 h p.i.). C. Atypical 
Immature Virion (IV) (12 h p.i.). D. Intracellular Enveloped 
Virion (IEV) (12 h p.i.). Microscope: Hitachi UI12A, Magnifica-
tions, A: 35000; B: 15000; C and D: 90000.
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Infection of bovine PBMCFigure 3
Infection of bovine PBMC. PBMC were isolated from bovine (Holstein Breed) whole blood on Ficoll density gradient and 
cultured with RPMIc containing RPMI 1640 with Glutamax, 25 mM Hepes (Gibco-BRL) supplemented with 10 % FCS, 1 % 
sodium pyruvate, 1 % non essential amino acids, 1 % β-mercapto-ethanol, 100 units/ml penicillin, 100 µg/ml streptomycin. 
When indicated, cells were activated 4 h before infection, using 125 ng/ml of phorbol myristate acetate and 50 ng/ml of iono-
mycine. To determine cell viability, propidium iodide (BD Biosciences Pharmingen) was added at 1 µg/ml just before acquisi-
tion. Acquisition was performed using a FACScalibur (Becton Dickinson). Dead cells and debris were excluded by appropriate 
gating and 30000 events were collected. Analysis was performed using CellQuestPro and Flowjo Software. A. Cells were 
infected at m.o.i. of 1 (T1-Serp2-GFP or SG33-GFP) and collected 16 h p.i.. Results shown are representative of three experi-
ments. B. Cells were infected at m.o.i. of 1 (T1-Serp2-GFP or SG33-GFP), collected 16 h p.i and analyzed for GFP expression 
by flow cytometry. The percentages indicated represent an average of at least 3 independent experiments. Errors bars corre-
spond to the standard error of the mean. C. PBMC were inoculated with T1 or SG33 (m.o.i. = 1), adsorption occurring 90 min 
at 4°C. Cells were washed twice and cultured. Virus productions at 0 h or 72 h post-infection were determined by serial dilu-
tion-titration on RK13 cells. The experiment was repeated three times. Error bars correspond to the standard error of the 
mean.
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steps of virus maturation, as numerous electron dense
particles, similar to those already described in non-per-
missive cells infected with MVA [17-20] were present. In
addition, very few IEV particles and no mature virions
could be observed. As already suggested, these dense par-
ticles are more likely the products of defective virions
morphogenesis [20]. The very low level and abortive
infection of bovine PBMC make it impossible for MYXV to
disseminate via leukocytes in these animal species. Taken
together, these results are compatible with the potential
use of the SG33 MYXV strain as a safe non replicative vec-
tor for bovine vaccination.
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