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Abstract

Background: Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent
mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene
expressions during FIPV infection are not fully understood.

Methods: RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79-1146 at 3 hours
post infection (h.p.i), were sequenced using the lllumina next generation sequencing approach. Bioinformatic's
analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench
mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal's Z test statistical
analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was
developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and
Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats.

Results: Based on Kal's Z-test, with False Discovery Rate (FDR) <0.05 and >1.99 fold change on gene expressions,

a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the re-
mainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression.
The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage
and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated

genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells
and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data.

Conclusion: The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.
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Background

Feline coronaviruses are enveloped, positive sense RNA
viruses that can be classified into two biotypes, namely
low virulent Feline Enteric Coronavirus (FECV) and
highly virulent Feline Infectious Peritonitis Virus (FIPV).
FECV is very common in the cat population worldwide,
and has been shown to have infected 20-60% pet cats
and shed by 75-100% cats in multi-cat environments
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[1,2]. Of those shedding the virus, 1-5% will develop
Feline Infectious Peritonitis (FIP) disease [3]. Within the
biotypes, the viruses are differentiated further into
serotype I and serotype II, based on virus neutralizing
antibodies. Type I FECV and FIPV strains are more ubi-
quitous worldwide and are more likely to cause clinical
FIP, while type II strains are less common, but more
adaptable to cell culture [2].

It has been suggested that FIPV, the causative agent
for FIP, is a mutant form of FECV [4,5]; where several
possible nature of mutation responsible for the increase
in virulence has been characterized. Studies have shown
that several mutations throughout the FIPV genome
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were detected, but mutations at 3c membrane protein
and 7b secretory glycoprotein genes were suggested to
be responsible for transforming FECV to FIPV [4,5]. A
recent study revealed that mutation of the S1/S2 locus
and modulation of a furin recognition site normally
present in the S gene of FECVs is a critical contributing
factor for development of FIP [6]. Furthermore, it was
found that FIPV infection is associated with T cell
depletion by apoptosis; although the virus cannot infect
CD4+ and CD8+ T cells [7,8]. Therefore, apoptosis of
CD4+ and CD8+ T cells is probably caused by mediators
from infected macrophages and/or intestinal epithelial
cells [8,9]. Hence, little is known about the interaction of
the virus and host cells; especially the early cellular
transcriptional responses towards virus infection, virus
mechanism of inducing T cell apoptosis, and the absence
of cell-mediated immunity (CMI) response in FIP in-
fected cats.

The use of a next generation sequencing approach in
RNA sequencing has facilitated understanding in defin-
ing the expression profiles of cellular responses during
pathogen infections. This method has been proven to be
helpful in explaining the pathogenesis of various viruses
[10,11], including Feline Immunodeficiency Virus (FIV)
infection [12,13]. Furthermore, the availability of complete
1.9X of cat genome, using the Whole Genome Shotgun
(WGS) approach, provides valuable information for the
bioinformatic’s analysis of feline host responses, following
pathogen infection. Moreover, the cat genome contigs
were aligned, mapped, and annotated to NCBI annotated
genome sequence of six index mammalian genomes
(human, chimpanzee, mouse, rat, dog, and cow) using
MegaBLAST [14].

Previous study has shown that more than 70% of FIPV
strain 79-1146 were internalized by CRFK cells at 3
hours post infection [15]. Hence, in this study, mRNA
from CRFK cells infected with FIPV strain 79-1146 at 3
h.p.i were sequenced using Illumina next generation
sequencing technology. The generated data was then
analyzed using CLC bio Genomic Workbench, where
the genes were compared to Felis catus 1.9X annotated
shotgun reference genome. Kal’s Z-test on expression
proportions [16] was used to determine significantly
expressed genes. Genes expressed with a False Discovery
Rate (FDR) <0.05 and >1.99 fold change were considered
for further analysis.

Results

Early gene expression of FIPV infected CRFK cells

Overall, the trimmed sequence reads match to 25,689
annotated transcripts; where only 215 (0.8%) were statis-
tically significant (Kal's Z test, p <0.05), and out of the
significant matched, only 96 (44.7%) transcripts were
expressed with fold absolute change of 2 or more. Of
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these 96 transcripts, 76 (79.2%) were up-regulated and
the remainder were down-regulated. After BLAST ana-
lysis, 76 up-regulated transcripts were matched to 44
genes while 20 down-regulated transcripts were matched
to 17 genes. Of the 44 up-regulated genes, there were 2
transcripts per gene for 32 genes, but only one transcript
per gene for the remaining 12 genes. Meanwhile, of the
17 down-regulated genes, there was one transcript per
gene for 14 genes and 2 transcripts per gene for 3 genes.

As shown in Figure 1, the RPKM of control samples
was plotted against the RPKM of infected samples; and
as such, genes with equal expression will line-up on the
diagonal identity line while genes with different expres-
sion values will either be over or under the diagonal line.
The further away the point is from the identity line, the
larger is the difference between its expressions in one
experiment compared with the other. Except for 4 genes
(MX1, RSAD2, PLIN2, and SERPINB1), most genes from
both samples were closely clustered together, thus sug-
gesting a homogeneous expression. The plot excluded 3
genes (CCL8, RNF7, and RPL39) that had infinite fold
change expressions.

Table 1 shows the top 20 up-regulated genes (in de-
creasing order) and their functions. The majority of the
genes were those associated with immune response,
while the remainder were associated with apoptosis, cell
cycle, cytokine, and ubiquitination activities. Further-
more, there were also 5 Interferon Stimulated Genes
(ISGs) coded for 6 proteins (RSAD2, A3C, A3H, MDAS5,
IFI35, and MX1) that were involved in inhibiting viral
entry, replication, and production. Interestingly, one gene
(PD-L1), which negatively regulates immune response in
viral infection, was also found to be highly up-regulated.
Meanwhile, the majority of the down-regulated genes were
involved in pro-inflammatory cytokine’s activation, CMI,
and anti-apoptosis activities (Table 2). Two unique down-
regulated genes (RNF7 and RPL39) were found to be
expressed in control uninfected cells only, where the former
had anti-apoptotic effect and the latter translated RNA to
protein.

Real-time RT-gPCR analysis of CRFK infected cells

Three host genes (A3H, PD-1, and PD-L1) were selected
for real-time RT-qPCR analysis, because they were
highly up-regulated and may play important roles during
FIPV induced disease; judging by their functions. ASH
was involved in viral RNA and DNA editing, causing
mutation, while PD-1 and its ligand (PD-L1) were in-
volved in programmed cell death that was associated
with negative regulation of immune response. Compari-
sons of fold change results of real-time PCR and tran-
scriptome study for A3H and PD-L1 genes revealed
almost similar levels of fold changes. The transcriptome
resulted in 4.07 and 5.65 fold change for 2 transcripts of
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Figure 1 Scatter plot of control RNA-seq RPKM versus infected RNA-seq RPKM of significant transcripts (p < 0.05) with absolute fold
change value of 2 or more. Most genes from both samples are closely clustered except for 4 genes label 1 to 6. 1 and 2 are MX1 transcripts 1
and 2, respectively, 3 and 4 = RSAD2 transcripts 1 and 2, respectively, 5=PLIN2 and 6 = SERPINB1.

J

A3H while real-time PCR resulted in 5.23+1.15 fold
changes (Tables 1 and 3). Meanwhile, transcriptome re-
sulted in 3.29 and 4.24 fold changes for 2 transcripts of
PD-L1 gene while real-time PCR resulted in 3.97 +0.29
fold changes. In the case of the PD-1 gene, RNA sequen-
cing was unable to detect the gene expression, due to
low coverage (i.e., data not shown), although real-time
PCR was able to detect an up-regulation of the gene at 3
h.p.i.

FIPV induced high and exceptionally high A3H ex-
pression at 3 and 48 h.p.i. respectively, but from 6 to 24
h.p.i., the gene was down-regulated. FIPV infected cells
also showed high up-regulation of PD-1 expression at 3
h.p.i. and moderately up-regulated at 12 h.p.i but were
being down-regulated at 6, 9, 24 and 48 h.p.i. Mean-
while, PD-L1 gene was consistently down-regulated from
3 hours to 48 h.p.i.

Fold change expression analysis of PBMCs of FIP
diagnosed cats

Peripheral Blood Mononuclear Cells (PBMCs), obtained
from cats with clinical signs associated with FIP (Table 4),
were purified and analysed with real-time PCR. In general,
all of the FIP diagnosed cats expressed the PD-1 and PD-
L1 genes more than 2 folds, while only 2 cats expressed

A3H gene more than 2 folds (Table 5). The highest expres-
sion fold for A3H, PD-1 and PD-L1 genes was detected
from cat no. 3 at 344 +0.36, 68.13 +19.45, and 96.94 +
21.54 fold changes, respectively. Meanwhile, cat no. 5
showed less fold changes of the genes compared to the
other FIP diagnosed cats.

Discussion

The pathogenesis of feline coronavirus infection is un-
clear. The reference feline genome sequence assembly of
transcriptome analysis of early infection (3 h.p.i.) of
CREK cells with FIPV 79-1146 showed that the expres-
sions of 215 transcripts (0.8% of the trimmed annotated)
were statistically significant, based on Kal’s Z test. Only
96 transcripts, which consisted of 44 up-regulated genes
and 17 down-regulated genes, were expressed with fold
absolute changes of 2 or more. Since only one sample
per group was analysed, Kal's Z test was used to deter-
mine the significant differences in the expression pro-
files. Study has shown that this test evaluates single
sample against another single sample where each group
in an experiment has only one sample [16]. This test is
based on an approximation of the binomial distribution
by the normal distribution considering proportions
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Table 1 List of top 20 up regulated genes and their functions

No. Fold change BLAST result Accession number Gene product function

1** oo/ o0 CccLs S5 67956 induce Th cytokinesattract monocyte, lymhpocyte, NK cell, dendritic cell,
basophil & eosinophil

2% 228/ 1933 RSAD2 XM_ 002921192 ISG, inhibit viral protein & RNA synthesis

3* 1298/ 7.64 CXCL10 XM_ 002924730 induce Th1 cells response stimulate monocyte, NK & T cell migration

4* 12.73/ 1136 SLAMF7 XM_ 002928442 stimulate NK cell cytotoxicity, B cell growth, promote lymphocytes adhesion

5 6.68 FSTL3 XM_ 850129 regulate cell to cell adhesion

6* 6.11/ 234 ATF3 XM_ 847382 promote apoptosis and cell proliferation, promotes Th1 and NK cells activity

7* 6.04/ 4.68 MFSD2A AL 663070 regulate cell growth, cell adhesion & motility

8 5.76 ESET XM_ 002914595 regulate inflammation & cell differentiation

g** 5.65/ 4.07 A3C & A3H EU 109281 ISG, antiviral cytidine deaminase, edit viral RNA/DNA causing mutation

10%* 535/ 448 MDA5 NG_ 011495 ISG, viral RNA sensor induce cytokines and interferons

11* 4.96/ 3.00 IFI35 XM_ 002930054 ISG, inhibit viral gene transcription

12% 446/ 3.90 TRIM25 XM_ 548223 ubiquitination of RIG-I and ISG15 induce type I IFN

13* 446/ 434 MX1 NM_ 001003134 ISG, induce apoptosis in virus infected cells

14%* 4.24/3.29 PD-L1 EU 246348 negative regulation of immune response, induce IL.-10

15*% 4.10/ 3.31 PHF11 AL 139321 Th1 cytokines activation

16%* 398/ 354 RUNTX1 NG_ 011402 regulate gene transcription for T cell differentiation and function

17** 3.79/2.85 BHLHE40 XM_ 002919988 regulate gene transcription, lymphocyte activation & cell cycle and cell death

18* 3.69/ 3.56 HERC5 XM_ 002913599 ubiquitination of ISG15 and RIG-|

19 3.69 ccL7z NM_ 001009849 activate T cell development and maturation

20 3.65 DTX3L XM_ 002927235 protect cell from DNA damage

*Two transcripts were found from the same gene.
**Two transcripts from the same gene with similar E-value, score and gaps.

Table 2 List of all 17 down regulated genes and their functions

No. Fold change BLAST result Accession number Gene Pproduct punction

01 —2.04 JAGT NG_ 007496 TLRs response, positive regulation of Notch signaling pathway

02 -2.04 c-KIT NM_ 001009837 signal transduction, apoptosis inducer, clathrin dependent endocytosis
03** —2.14/ -244 JUB XM_ 537368 co-trancriptional repressor with GFI-1, cell adhesion

04 -2.22 SERPINB1 AF 053630 neutrophil proteolytic activity inhibitor,

05 -234 CD59 NM_ 001112709 T-cell differentiation, gene transcription repression

06 —240 COTL1 XM_ 001144958 pro-inflammatory leukotrienes activation

07** —2.62/-2.71 RASL11B XM_ 848847 macrophage activation

08 -2.73 DUSP1 XM_ 002916919 regulate cytokine expression, attract phagocytic cell to inflammation site
09 —2.84 RABSA XM_ 002912702 protein localization & transport, exocytosis

10 -3.22 RPL30 AB 070559 RNA translation

11 -323 UBTD2 XM_ 546238 anti-apoptotic activity

12 —3.27 CKS2 AF 506708 anti-apoptotic activity

13 —4.80 SRP9 XM_ 849646 protein export

14* -4.98/ -5.89 CRIP1 XM_ 850438 T helper cytokines regulation, immune cells differentiation and proliferation
15 -10.04 ID1 XM_ 847117 anti-apoptotic activity, TGF-beta signaling pathway

16 oo RNF7 XM_ 003433156 anti-apoptotic activity

17 -00 RPL39 NG_ 016250 RNA translation

# dash symbol (-) represents down regulation of genes in order to differentiate with fold change values of up regulated genes.

**Two transcripts from the same gene with similar E-value, score and gaps.
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Table 3 Fold changes of A3H, PD-1 and PD-L1 genes in
CRFK cells at different time points following infection
with FIPV

Fold change + SEM ™"

Time (Hours) A3H PD-1 PD-L1
3 523+1.15 850+ 1.06 397+029
6 -0.37+0.03 -0.19+0.01 0.97 +£0.07
9 —041+0.11 -0.23+0.08 —021+0.02
12 -023+0.03 251+027 -0.50+0.07
24 —0.09+0.01 -0.38+0.03 —0.46 +0.05
48 991.94 £ 113.62 —0.24+0.02 —0.13+0.03

*GAPDH and YWHAZ as reference genes.
**Three replicates of each reaction were performed.

rather than raw counts so that it can be used reliably on
libraries of different size.

The transcriptional profiles of selected genes in FIPV
in vitro infected cells, as well as cats diagnosed with FID,
were explored. The expressions of A3H, which involved
in viral RNA and DNA editing causing mutation during
RNA virus infection [17] and PD-1 and its ligand (PD-
L1), which are involved in programmed cell death and
negative regulation of T cells immune response [18],
were characterised. A3H has antiretroviral activity by
generating lethal hypermutations in viral genomes and is
associated with increased resistance to HIV-1 infection
in certain populations [19]. In the case of felines, A3H
(but not A3C) has been found to reduce the infectivity
of feline leukemia virus [17]. It is interesting to detect
that the expression of A3H is readily expressed at higher
levels in PBMCs than in FIPV infected cells (Tables 3
and 5), indicating the possible involvement of the gene
in antiviral activity. Furthermore, the up-regulation of
the gene is less, compared to PD-1 and PD-L1 in FIPV
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Table 5 Fold changes of A3H, PD-1 and PD-L1 genes from
FIP diagnosed cats

Fold change + SEM ™"

Cat ID A3H PD-1 PD-L1
1 1.11+£0.14 7.29£156 18.88 £3.67
2 1.51+0.16 3526 +6.59 20.79+3.19
3 344£036 68.13 £ 1945 96.94 + 21.54
4 1.36+0.11 40.73 £550 7563 +3.73
5 1.27 +0.08 249+048 3.04+0.23
6 2.70+0.35 28.73£6.30 4550+4.27

*YWHAZ as sole reference gene.
**Three replicates of each reaction were performed.

diagnosed cats. In addition, the expressions of A3H are
significantly up-regulated in FIPV infected CRFK cells at
48 h.p.i. The actual reason for this high expression of
A3H is unclear, but suggests that this gene is essential in
restricting viral replication or forming part of the type 1
interferon-induced innate response, since recent study
has indicated the involvement of A3H in restricting virus
replication [17,20].

Our results show that up-regulation of PD-1 and PD-
L1 gene’s expression in PBMCs occurred in cats diag-
nosed with the FIP disease. In general, their expressions
are correlated to each other. Similar patterns were also
observed in chronic FIV infection [21] and in HIV infec-
tion in humans [22]; where they were associated with in-
creasing immune dysfunction and T cell depletion.
Previous studies have shown that although FIPV cannot
infect CD4+ and CD8+ T-cells [8], cats infected with the
virus showed T cell depletion by apoptosis resulting in
an acute immunodeficiency [7]. Hence, we hypothesized
that PD-L1 could be a mediator that mediates apoptosis
of CD4+ and CD8+ T-cells, since its expression is found

Table 4 Clinical and serological parameters of FIPV diagnosed and normal cats used in this study

Cat ID Age Form of FIP FCoV Ab** FeLV Ab FIV Ab
1 adult wet form: abdominal effusion S4 (=) =)
2 8 months wet form: abdominal effusion S3 ) )
3 1 year wet form: pleural effusion S4 =) =)
4 3 years wet form: abdominal effusion S4 () =)
5 8 months wet form: abdominal effusion S4 =) =)
6 1 year wet form: pleural effusion S5 =) -)
7* 3 years negative control, healthy S1 =) )
8* 7 years negative control, healthy S1 (=) =)
9* 1 year negative control, non-healing wound ST =) -)

10% 1 year negative control, healthy S1 =) =)
11% 7 months negative control, healthy S1 (=) =)

FCoV =feline coronavirus, FIV = feline immunodeficiency virus, FeLV = feline leukemia virus.
*Normal cat as control.
**The kit's CombScale range from S0 to S6. Only cats with titer S3-S6 are considered to be positive for FIP based on the manual. The manual stated that S3,
a significant positive response is equivalent to IFA titer >1:20.



Harun et al. Virology Journal 2013, 10:329
http://www.virologyj.com/content/10/1/329

in a wide range of nonhematopoietic cells [23]. Further-
more, the blockade of PD-L1 expression was found to
enhance T cell immunity and cytokine production [24].
Nevertheless, more studies are required to confirm our
hypothesis.

It has been established that cats infected with FIPV
undergo extensive tissue destruction due to inflamma-
tory reaction [2]. Even though the study was performed
on infected CRFK cells, a kidney epithelial cells, it is in-
teresting to note that transcriptome analysis of cells pro-
posed that the inflammation process was associated with
proinflammatory and Thl-like cytokines production, due
to the up-regulation of several chemokine genes, such as
CCL8, CXCL10, and CCL17; and genes associated with
innate immune responses, such as PHF11, ATF3, and
IRF1. Further study on infection of FIPV in particularly
type I FIPV on macrophage-like cells namely fcwf-4 cells
and samples from FIP diagnosed cats will add more
value to our findings. Furthermore, the down-regulation
of CRIP1 (a T helper regulatory gene) (Table 2) also
suggests that FIPV infection is associated with Thl re-
sponse, based on a study on CRIP1 gene in mice,
transgenic mice, and in murine cell line [25]. In that
study, they found that the down-regulation of CRIP was
associated with the expression of IL-2, IFN-y, and TNE-
a. Previous studies have shown that in vitro and in vivo
FIPV infections were associated with TNF-a and IFN-y
expressions [9,26].

Based on previous studies on the growth of FIPV 79—
1146 in CRFK cells, production of progeny virus start
between 3 and 6 hours post inoculation and increased
rapidly until 12 hours post inoculation [27]. In our
study, we found that at 3 hours, a few complete virus ge-
nomes that completely aligned to FIPV 79-1146 refer-
ence genome sequence (data not shown) has already
been assembled. MX1 expression was up-regulated in
FIPV infection (Table 1), similar to other RNA virus in-
fections, its role in FIP pathogenesis is still unclear and
requires further investigation. Previous studies have
shown that the expression of MX1 gene inhibits viral
replication during various RNA virus infections [28,29].
Early in vitro FIPV infection is also associated with a
marked increase in the expression of RSAD2 (radical S-
adenosyl methionine domain-containing protein 2) also
known as viperin (Table 1). Previous studies have shown
viperin involvement in inhibiting viral RNA and/or pro-
tein synthesis during different virus infections, such as
the West Nile virus, Dengue virus, and hepatitis virus
[30,31]. Hence, further study is required to define the
role of viperin in FIPV replication and infection. Serine
Proteinase Inhibitor clade B member 1 (SERPINBI) is the
only gene that was markedly down-regulated (Table 2).
SERPINBI functions as an inhibitor of the neutrophil serine
proteases, found at inflammatory sites where the inhibition
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of the gene prevents tissue destruction by phagocytic cells
during the virus clearance process by infiltrating
neutrophils and monocytes [32,33]. Thus, SERPINB1
down-regulation could possibly be part of innate im-
mune response in recruiting phagocytic cells for the
proteolytic destruction of infected cells. Besides genes
that modulate T cell functions, several genes with pro-
apoptotic and/or anti-apoptotic are also differentially
regulated; thus highlighting their functions in regulat-
ing the apoptosis of virus infected cells (Additional
file 1: Table S1 and Additional file 1: Table S2). How-
ever, the pro-apoptotic gene YAP-65 or YAP-1, which
was found up-regulated in FIV infection in CRFK cells
[34], was not up-regulated in this study.

Conclusion

In conclusion, this present study has described the tran-
scriptional profiles of cellular genes in vitro system can
be applied to an in vivo situation and the possible in-
volvement of A3H, PD-1, and PD-L1 genes during FIPV
infection. However, further studies are required to eluci-
date the roles of these genes, and their interactions with
other genes, during FIPV replication and infection espe-
cially in in vivo model.

Materials and methods

Virus and cell lines

Monolayers of Crandell Rees Feline Kidney (CRFK) cells
(ATCC® no. CCL-94™) were grown in a base media con-
sisting of Minimum Essential Medium (MEM), 10%
Fetal Bovine Serum (FBS), 2% penicillin and strepto-
mycin, 2% amphotericin B, and non-essential amino
acids at 37°C and 5% CO2. For transcriptome study,
CRFK cells were infected with FIPV 79-1146 (ATCC®
no. VR-2126™) at a Multiplicity Of Infection (MOI) of 2.
The virus was incubated for one hour for virus attach-
ment. After incubation, 1% FBS MEM was added and
the cells were incubated for a further 3 hours. At the
end of incubation, the cells were harvested using
TrypLE™ and centrifuged twice in a PBS at 4°C for 5 mi-
nutes at 1000rpm. Cell pellets were stored at —80°C until
RNA extraction. For the control sample, the same
process was applied, with the exception that 2 ml of
sterile PBS was used to replace the virus.

RNA extraction and sequencing

An RNeasy® Mini Kit (Qiagen®, USA) was used to extract
and purify RNA samples as per the methods recom-
mended by the manufacturer. The quality of the ex-
tracted RNA was determined by an Ultrospec 3000 Pro
UV/Visible spectrophotometer (GE Healthcare, UK),
where samples with an absorbance ratio value (A260/
A280) of 1.8 to 2.0 were considered for further analysis
with an Agilent® 2100 Bioanalyzer. Samples with RNA
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Integrity Numbers (RIN) 9 to 10, and concentrations
higher than 500 ng/pl per sample, were sent for Illumina
GAII sequence analysis.

Bioinformatics analysis

A total of 17.3 Gb of sequencing data, comprised of both
control and infected samples, was imported into the
CLC bio Genomic Workbench (GWB). The sequences
were trimmed for adapter sequences and low quality
base. The trimmed raw sequences were subjected to
RNA-sequence analysis, by mapping them to an anno-
tated feline genome reference sequence [35] accounting
for a maximum of two gaps or mismatches in each se-
quence. Unpaired group comparisons, based on Reads
Per Kilo base per Million (RPKM) [36], were chosen as
expression values for comparison. Kal’s Z test statistical
analyses, based on False Discovery Rate (FDR) <0.05 and
fold change >1.99 were used to filter the expressed
transcripts. The resulting list was then BLAST at NCBI
servers (http://www.ncbi.nlm.nih.gov/) using GWB'’s built-
in BLAST (blastn, refseq_rna or nr databases, mammals
only). Homologous sequences with the lowest e-value,
highest score, and lowest percentage of gaps to the query
sequence, was selected as the transcript identity.

Real-time RT-gPCR analysis of FIPV infected CRFK cells
In order to validate the transcriptome results, the ex-
pression profiles of 3 genes (A3H, PD-1, and PD-L1)
were analysed using real-time PCR. Briefly, viral RNA
from FIPV strain 79-1146 infected CRFK cells at 3, 6, 9,
12, 24, and 48 hours post infection (h.p.i.) were collected
and processed as described previously. Control cells, in-
oculated with PBS only, were used as a control. Primers
were designed using Primer-BLAST (http://www.ncbi.nlm.
nih.gov/tools/primer-blast/) and synthesized by AITbiotech
PTE LTD (Singapore) (Table 6).

The reactions were performed using SensiFAST™
SYBR No-ROX One Step kit (Bioline Ltd, UK) on Bio-

Table 6 Primers sequences used in this study
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Rad CFX 96™ Real-Time System, with C1000™ Thermal
Cycler (Bio-Rad Laboratories, USA). Briefly, the reaction
mixture of 20 ul contained 10 pl 2x SensiFAST SYBR
No-ROX One-Step mix, 0.5 pl forward & reverse primers
(5nM for GADPH, PD-L1 and A3H, 3nM for PD-1 and
10nM for YWHAZ), 0.2 pl RT, 0.4 ul RiboSafe RNase in-
hibitor, 2.4ul H,O, and 6pl extracted RNA. The RT-
qPCR reaction conditions were as follows; one cycle at
45°C for 10mins, one cycle at 95°C for 2 mins, and 35
cycles at 95°C for 5 secs; then 57°C (YWHAZ), 58°C
(PD-L1), 59°C (GAPDH), 64°C (A3H), and 65°C (PD-1)
for 20secs; and finally, at 72°C for 5 secs. One cycle for
the dissociation curve for all reactions was added and
melting curve analysis was performed. Data generated
from the technical triplicate experiment was analysed
with 2724T method [37] using Bio-Rad CFX Manager
version 2.0. GAPDH and/or YWHAZ genes were chosen
as reference genes, based on previous studies [38,39].

Real-time RT-gPCR analysis of peripheral blood mono-
nuclear cells from FIP diagnosed cats

Besides FIPV infected cell cultures, Peripheral Blood
Mononuclear Cells (PBMCs) were also used to analyse
the transcriptome results. Six FIP diagnosed domestic
short hair breed cats, with ages ranging from 8 months
to adult, that were admitted to University Veterinary
Hospital, UPM, were considered for this study (Table 4).
The cats tested negative for FeLV and FIV antibodies,
but positive for FCoV antibodies, and showed abdom-
inal/pleural effusion. Meanwhile, 5 healthy cats, with
negative results for FCoV, FelLV, and FIV antibodies,
were selected as controls. The kits for FCoV, FeLV and
FIV antibody tests originated from Biogal’s feline corona-
virus (FCoV) [FIP] ImmunoComb°® Antibody test kit
(Biogal Galed Laboratories, USA) and IDEXX’s SNAP®
Combo FeLV Ag/FIV Antibody test kit (IDEXX Labora-
tories, USA), respectively. The tests were performed as
per the methods recommended in their respective

Target gene Accession number Sequence 5' - 3' Reference
GAPDH NM 001009307 F: AGTATGATTCCACCCACGGCA [36]
R : GATCTCGCTCCTGGAAGATGGT
YWHAZ EF458621 F: ACAAAGACAGCACGCTAATAATGC [37]
R: CTTCAGCTTCATCTCCTTGGGTAT
PD-1 EU295528 F: GAGAACGCCACCTTCGTC [19]
R: TGGGCTCTCATAGATCTGCGT
PD-L1 EU246348 F: CGATCACAGTGTCCAAGGACC [19]
R: TCCGCTTATAGTCAGCACCG
A3H EF173020 F: ACCCACAATGAATCCACTACAG This study

R: AGGCAGTCTTTGTGAATTAGGG

F, forward primer, R, reverse primer.
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manuals. The health assessment and blood collection of
the cats were performed by a trained and certified veterin-
arian (GTS). The sampling were performed according to
internationally recognized guidelines and recommended by
the Animal Care and Use Committee at the Faculty of
Veterinary Medicine, Universiti Putra Malaysia.

Two to 5ml of cat blood was drawn and stored at 4°C
in BD Vacutainer® (BD USA) EDTA-K2 tubes. Parts of
the blood were used for the test kits, while the rest was
processed for PBMCs extraction. PBMCs were isolated
using the Ficoll-Paque™ Plus (GE Healthcare, USA)
method, according to the manufacturers protocol. Total
RNA from PBMCs was isolated using an RNeasy mini
plus kit (Qiagen, Germany), as described by the manu-
facturer. RNA quantity and purity was measured and
assessed using a Nanodrop Nanophotometer P-class
(Implen GmbH, Germany). The isolated RNA samples
were either kept at —80°C for further analysis, or imme-
diately used for real-time RT-qPCR analysis.

Additional file

Additional file 1: Table S1. List of 76 transcripts from 44 up regulated
genes with proportions fold change of 2 or more (Kal's Z test, FDR < 0.05)
with their BLAST results, NCBI accession number and gene product
function. Table S2. List of 20 transcripts from 17 down regulated genes
with proportions fold change of —2 or more (Kal's Z test, FDR < 0.05) with
their BLAST results, NCBI accession number and gene product function.
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