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Abstract

Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates,
birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish
latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small
non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation
of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in
polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they
play in controlling both host and viral protein expression. We also give an overview of the current understanding
on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis.
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Review

General overview of polyomaviruses

Polyomaviruses comprise a family of DNA tumor vi-
ruses. They are non-enveloped and have a circular,
double stranded DNA genome of around 5,100 bp [1].
The virion consists of 72 pentamers of the capsid pro-
tein VP1 with a single copy of VP2 and VP3 associated
to each pentamer [2,3]. Although originally categorized
together with the Papillomaviridae under the designa-
tion of Papovaviridae, they were separated in 2000 by
the International Committee on Taxonomy of Viruses to
become two distinct families [4,5]. The first polyomavi-
rus family member, murine polyomavirus (MuPyV), was
discovered as a tumor agent in mice already in 1958,
shortly followed by the first primate polyomavirus,
Simian Virus 40 (SV40), which was discovered in 1960
[6,7]. Since the discovery of the first two human
polyomaviruses, JC Virus (JCPyV) and BK Virus (BKPyV)
in 1971, several new members of the polyomavirus
family have been identified [8,9]. To date, complete
genome reference sequences for 46 polyomaviruses
have been deposited at Genbank. Of those, 12 are hu-
man polyomaviruses [10-13]. Several polyomaviruses
have been associated to specific diseases, such as Pro-
gressive Multifocal Leukoencephalopathy (PML) for
JCPyV, polyomavirus-associated nephropathy (PVAN)
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for BKPyV, Merkel cell carcinoma (MCC) for Merkel
Cell Virus (MCPyV) and trichodysplasia spinulosa for
Trichodysplasia spinulosa-associated Polyomavirus (TSPyV)
[4,10,11,14-20]. One of the most striking observations is the
fact that asymptomatic infection occurs during childhood
which is followed ordinarily by life-long asymptomatic
persistence [21]. It remains however puzzling how this
latency state is changed into a reactivated state upon
changes in the host immune system in some individuals.

All polyomaviruses have a similar genomic organization
where the genome is almost evenly divided into an early
and a late region encoded on opposite strands (Figure 1).
In-between these two regions, a non-coding control
region (NCCR) is present. This region encodes the
origin of replication and contains the promoter ele-
ments that control transcription of both the early and
late transcripts. The early region is transcribed soon after
initial infection of the host cell and encodes at least the
two proteins large T (tumor) antigen (LTAg) and small t
antigen (stAg), which share the amino-terminal 75-80
amino acids. This shared part is encoded by exon 1 of the
LTAg gene. Alternative splicing of the early messenger
RNA (mRNA) transcript can result in up to three
additional T antigens. In the case of JCPyV, three add-
itional early proteins, T’135, T’136 and T’165, have been
identified [22]. Also in BKPyV, SV40 and MCPyV, add-
itional T antigens resulting from differently spliced early
transcripts have been described [23-25]. LTAg exerts a
pivotal function in viral replication and several domains
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Figure 1 Polyomavirus encoded miRNAs. Different genomic locations of the polyomavirus encoded miRNAs have been described, but all of
them are targeting the early transcript encoding the Large T-antigen (LTAg) and small T-antigen (stAg). Minor splicing variants of LTAg and MTAg
(in MuPyV) are not presented. A, The alpha polyomaviruses JCPyV, BKPyV, SV40 and SA12 encode a miRNA located at the 3’ end of, and antisense
to LT. Remark VP4 is included for completeness but has so far only been detected in SV40. B, MCPyV and MuPyV encode a miRNA located at the
5" end of, and antisense to LT. C, BPCV, a virus that shares distinct characteristics of both the Polyomaviridae and the Papillomaviridae encodes a

miRNA located in the second non-coding region (NCR2, indicated in pink) between the 3" ends of the T-antigens and L1/L2.

can be identified in the protein that play specific roles in
viral DNA replication and cell cycle control [26-30]. stAg
also contains specific domains that bind to cellular pro-
teins involved in cell cycle regulation, of which protein
phosphatase 2A (PP2A) is best described [31,32]. The late
region, as the name would suggest, is expressed later in
the viral life cycle and results in the production of three
capsid proteins VP1, VP2 and VP3, which will form the
viral capsid. All of these proteins originate from the same
mRNA transcript but are produced upon differential spli-
cing and internal translation and use the same reading
frame [33-35]. VP4, which also originates from the late
transcript, has so far only been detected in SV40 where it
functions as viroporin, promoting release of the virus from
the cell [36,37]. The human polyomaviruses JCPyV and
BKPyV and the monkey polyomaviruses SV40 and SA12
(and most probably other SV40-like viruses) also encode
the agnoprotein on the leader region of the late transcript
[38,39]. While no other polyomaviruses are known to en-
code this agnoprotein, murine and hamster polyomavirus
encode a middle T antigen which functions as transforming
protein [40]. Recently, also MCPyV was found to encode a
protein phylogenetically related to this middle T antigen,
called ALTO [41].

Biogenesis and function of microRNAs

MicroRNAs (miRNAs) are RNAs of 20-23-nucleotide
(nt) length that play a key role in several cellular pro-
cesses. These non-coding RNAs typically silence gene ex-
pression by directing repressive protein complexes to the
3" untranslated region (3'UTR) of target mRNA tran-
scripts. Although originally discovered in the nematode

C. elegans, they have been found to be expressed in several
organisms, such as insects, nematodes, plants, humans
and viruses [42-46]. Of particular interest is the role these
small RNAs play in regulation of the innate immune
response, adaptive immune cell differentiation, metabol-
ism, apoptosis, cell proliferation, cancer and maintenance
of homeostasis during stress [43,47].

MiRNAs are derived from longer precursor primary
transcripts (pri-miRNAs) that are typically transcribed
by RNA polymerase II (Pol II), which also is responsible
for transcription of mRNAs. These pri-miRNAs contain
at least one imperfect stem-loop hairpin structure and
this hairpin structure is processed in the nucleus via the
RNAse III-like endonuclease Drosha [48]. The newly
formed ~60 nt hairpin, called pre-miRNA is exported
from the nucleus into the cytosol via the RAN-GTPase
Exportin-5 [49,50]. In the cytoplasm, this pre-miRNA is
recognized and cleaved by the RNAse III-like endonucle-
ase Dicer resulting in an RNA duplex, typically having
short (~2nt) 3" overhangs [51,52]. One of the two
strands of this ~22nt duplex RNA, called the miRNA or
“guide” strand is loaded into the multiprotein RNA-
induced silencing complex (RISC). The other strand,
called the “star” (*) or “passenger” strand is energetically
less favored to enter RISC and is therefore typically
found at lower steady state levels. A key component of
RISC is the Argonaute (Ago) protein, which associates
with the guide strand, thereby directing the complex to
the target sequence through Watson-Crick base pairing
[51-53]. MiRNA binding sites are usually located in the
3" UTR and are often present in multiple copies. Most
animal miRNAs bind imperfectly with the target mRNA,
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although a key feature of recognition involves base-
pairing of miRNA nucleotides 2—8, representing the seed
region [54]. The degree of miRNA-mRNA complemen-
tarity is a key determinant of the further process. Perfect
or near perfect complementarity may lead to Ago-
catalyzed cleavage of the mRNA strand, whereas imper-
fect complementarity leads to translational repression,
which is thought to be the default mechanism by which
miRNAs repress gene expression [54-56]. Although mul-
tiple Argonaute proteins are present in mammals, only
Ago2 is shown to have mRNA cleavage activity [57].

Polyomaviruses encoded miRNAs
Given the role miRNAs play in several cellular processes,
it was perhaps not surprising that viruses would employ
them to modulate both their own gene expression and
that of their host cells [58]. Since the discovery of the
first viral encoded miRNAs in Epstein-Barr virus (EBV),
493 viral miRNAs have been identified and entered in
miRBase (http://www.mirbase.org), most of them encoded
by DNA viruses which replicate in the nucleus, such as
herpesviruses and polyomaviruses [59-61]. While herpes-
viruses encode between 0 (Varicella Zoster Virus) and 68
(Rhesus lymphocryptovirus) miRNAs, all polyomaviruses
where miRNAs have been investigated encode only 2
mature miRNAs, originating from one pre-miRNA
(according to miRBase version 20) (Table 1, Figure 1 and
Figure 2A).

The closely related polyomaviruses JCPyV, BKPyV,
SV40, and SA12 have been shown to encode a single pre-

Table 1 microRNAs in polyomaviruses
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miRNA that maps to the late strand of the viral genome
and is found downstream of the late polyadenylation (pA)
site (Figure 1A) [62-66]. The mature miRNAs are lo-
cated at the 3’end of the second LTAg exon, which is
transcribed in the viral early transcript and the
miRNAs are therefore completely complementary to
the early mRNA. As would be predicted based on this
property, it was shown for SV40 that the miRNAs
direct cleavage of this early mRNA resulting in re-
duced protein expression of LTAg and stAg [64]. Al-
though there is very high sequence similarity among
the miRNAs encoded by JCPyV, BKPyV and SA12,
the 5" and 3’ mature SV40 miRNAs only have 50
and 77% identity to the JCPyV and BKPyV sequences,
respectively [63] (Figure 2A). In contrast the 3’
miRNA is 100% conserved among JCPyV, BKPyV and
SA12. Consequently, in case of co-infection of e.g.
JCPyV and BKPyV no differentiation of miRNA activ-
ity can be made. Remarkably, for all these miRNAs
both the 5p and 3p arms are generated from the pre-
miRNA hairpin and large amounts of pre-miRNA are
accumulating in the cell, indicating inefficient pro-
cessing of this pre-miRNA [58].

Up till now, limited knowledge is available on miRNAs
in other polyomavirus. In murine polyomavirus (MuPyV)
and Merkel Cell Virus (MCPyV), no sequence hom-
ology was found with the miRNAs identified in the
alpha polyomaviruses. However, in both viruses, a
miRNA was identified that is located complementary
to the early mRNA transcript but located more

miRBase V20

Genomic location (nt position in

Virus miRNAs Accession No. reference sequence) mRNA targets References

JCPyV jcv-miR-J1-5p MIMAT0009147 3" end LTAg (2682-2767 in NC_001699.1) LTAg, StAg2 ULBP3 [63,65,66]
jcv-miR-J1-3p MIMAT0009148

BKPyV bkv-miR-B1-5p MIMAT0009149 3" end LTAg (2808-2909 in NC_001538.1) LTAg, S‘[Ag2 [63,65,66,78]
bkv-miR-B1-3p MIMAT0009150

Va0 sv40-miR-S1-5p MIMAT0003344 3" end LTAg (2776-2863 in NC_001669.1) LT, stAg DMWD?, C200rf27° (64,85]
sv40-miR-S1-3p MIMAT0003345

At sa12-miR-S1-5p . 3" end LTAg (2786-2869 in NC_007611.1) LTAG?, stAg? (62]
sal2-miR-S1-3p

NPy mcv-miR-M1-5p  MIMAT0010150 5’ end LTAg (1168-1251 in JN383838.1) FETQ%DAzh/}LBSF;ﬁéz F;EZA%ZO&AE;W% [68,69]
mcv-miR-M1-3p MIMAT0010151 '
mpv-mir-M1-5p 5"end LTAg (1137-1269 in NC_001515.1) LTAg, MTAg, stAg [67]

MuPyV na.
mpv-mir-M1-3p

BPCVI  Bpov-mirBl-3p  MIMAT0020276 Effaeag]“;f o onds ﬁéﬁgﬁ&g;}i?e”s and  T-antigens' [72)

BPCVY2 Bpcv-mir-B2-3p MIMAT0020277 between the 3’ ends of the T-antigens and T-antigens' [72]

L1/L2 (no reference available)

! experimental evidence using reporter constructs only.

2 predicted target, no experimental evidence.
n.a. not available.
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Figure 2 Sequences of polyomavirus miRNAs. A, Sequence comparison of the different polyomavirus miRNAs. The mature 5p and 3p miRNAs
are indicated in red. Remark that for Bpcv1 and Bpcv2 also a 5p miRNA was observed, but no mapping of the sequence was performed. The
sequence that was used for probing of this 5p miRNA is indicated in blue. B, Sequence variants observed in JCPyV. A total of 643 JCPyV
nucleotide sequences were retrieved from NCBI and aligned using ClustalW algorithm in BioEdit. Relative abundance (%) of each sequence
variant was calculated. JCV-miR-J1 sequence from miRBase V20 was used as reference sequence.
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upstream, at the 5° end of the second LTAg exon
(Figure 1B). As was the case for the alpha polyomavi-
rus encoded miRNAs, the MuPyV miRNA was also
shown to direct cleavage of the early mRNA, conse-
quently downregulating protein expression levels of
LTAg, as well as MTAg and stAg [67]. For MCPyV
targeting of the early mRNA transcripts by its miRNA
was demonstrated using reporter constructs [68,69].
Based on these observations, it appears that, despite
differences in sequence or genomic location, polyoma-
virus miRNAs all share the property that they target
the early mRNA transcript.

Recently, a miRNA has also been identified in Bandicoot
Papillomatosis Carcinomatosis Virus (BPCV), a virus that
shares distinct characteristics of both the Polyomaviridae
and the Papillomaviridae. BPCV is a marsupial virus asso-
ciated with papillomas and carcinomas in western barred
bandicoots (Perameles bougainville) [70,71]. This miRNA
is not located in and complementary to the early
transcript. Instead, it is located within the second non-
coding region between the 3" ends of the T-antigens and
L1/L2 (Figure 1C). Furthermore, this BPCV miRNA was
shown to have its own promoter located within ~60 nt of
the base of the stem portion of the predicted hairpin pre-
miRNA. Despite the different genomic organization, this
miRNA was also shown to downregulate BPCV T-

Antigens through targeting of the 3'UTR of the BPCV
early transcript [72].

In order to get a snapshot of sequence variation in the
miRNA region, an analysis was performed on a set of
643 publicly available nucleotide sequences of JCPyV
isolates (Figure 2B). Besides some minor variants that
only were observed very rarely, 3 variants were identified
that appeared to be widespread. Two of these polymor-
phisms are located in the loop region between the 5’
and 3" miRNAs and one is located in the 5" miRNA. Of
particular interest is the polymorphism in the 5" miRNA
as this appears to represent one of the 3 differences be-
tween the 5" miRNAs of JCPyV and BKPyV, indicating
that these miRNAs are even more similar than originally
being described [63]. Whether these polymorphisms im-
pact the stability of the pre-miRNA or the functionality
of the mature miRNAs needs to be investigated. For
SV40, a recent study has demonstrated that different
miRNA variants exist that have different host target rep-
ertoires, while their autoregulatory activity on virus-
encoded early gene products is preserved [73].

Time-course expression analysis of the polyomavirus
miRNAs all show miRNA expression late in infection
[63,64,67]. Together with the fact that the miRNAs are
encoded on the late strand, it was suggested that the
pre-miRNA emanates from the viral late pre-mRNA
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[58,64]. Conversely, the late polyadenylation site of
polyomaviruses is located between the 3’ ends of VP1 and
LTAg, suggesting that the more downstream encoded
miRNA is not transcribed on the late mRNA transcript. It
was however shown that the late polyadenylation site ex-
erts only very weak polyadenylation efficiency specifically
at late times in infection, thereby allowing long primary
transcripts to be produced [74-76]. Furthermore, produc-
tion of these long transcripts appears to lower the accu-
mulation of early mRNAs [77]. Whether polyomavirus
miRNA expression is dependent on this late-strand read-
through or whether it is produced from a so far unknown
independent transcript, remains to be determined.

Autoregulatory role of Polyomavirus miRNAs

The fact that different polyomaviruses encode miRNAs
that may differ in sequence and their genomic location,
but all target their respective early mRNA transcript
indicates an important role of these small regulatory
RNA fragments in the life cycle and possibly also host
interaction of this virus family. It was shown that
expression of the miRNAs reduces expression of LTAg
[63,64,67,69]. As LTAg plays an important role in recog-
nition of infected cells by the cytotoxic T lymphocytes
(CTL), it was originally thought that miRNA mediated
downregulation of the LTAg mainly plays a role in low-
ering recognition by the immune system [64]. However,
no differences in infection could be observed in specific-
ally designed SV40 or MuPyV miRNA mutants, conse-
quently questioning the importance of these miRNAs
[64,67]. Recently, however, the importance of miRNA
mediated downregulation of LTAg was re-established as
it was shown that downregulation of BKPyV LTAg by its
own miRNA is one of the main factors controlling viral
replication [78]. Reduction of the miRNA expression level
through rearrangements in the NCCR was shown to
increase viral replication and as such expression of the
viral miRNA might be a crucial element in establishing or
maintaining viral latency or persistence [78]. This high
degree of regulation is rather atypical for miRNAs as
they usually exert a more fine-tuning role. This might
be attributed to the fact that these miRNAs have full
complementarity to their target, thereby promoting
degradation of the mRNA strand, rather than the
more common translational inhibition upon imperfect
complementarity. It will be interesting to see whether
this essential role of the viral miRNA in controlling
the viral replication is a common theme among all
polyomaviruses.

Regulation of host factors by Polyomavirus miRNAs

Next to the autoregulatory role of the viral miRNAs, it
was also suggested that viral miRNAs could play an im-
portant role in controlling specific host factors, possibly
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resulting in immune evasion and viral persistence [79].
The 3" miRNA of JCPyV (and BKPyV as they are identi-
cal) specifically downregulates the expression of ULBP3
(UL16-binding protein 3) through binding to its 3'UTR,
resulting in reduced translation of the transcript (Figure 3)
[65,66]. ULBP3 is one of the stress-induced ligands that
are recognized by the powerful killer receptor NKG2D
(natural killer group 2, member D), which is expressed by
NK cells and CD8" T cells, resulting in target cell killing
[80-82]. It was demonstrated that JCV-miR-J1-3p medi-
ated downregulation of ULBP3 leads to escape from
NKG2D-mediated killing by NK cells [65,66]. Remarkably,
it was also shown that the miRNAs derived from the
herpes viruses human cytomegalovirus (HCMV), Kaposi's
sarcoma-associated herpesvirus (KSHV) and EBV target
MICB (MHC Class I chain-related protein B), another
NKG2D ligand [83,84]. Next to this targeting of NKG2D
ligands, it was shown more recently that SV40-miR-S1-5p
might negatively regulate the expression of host proteins
DMWD and C200rf27 through targeting of their respect-
ive 3" UTR [85]. As this was demonstrated using lucifer-
ase reporter assays only, determination of actual protein
levels will be required to confirm this interaction. The
functional relevance of this miRNA dependent host factor
control also remains to be elucidated as little is known of
both proteins, except for a role of DMWD in myotonic
dystrophy [86]. For MCPyV potential host targets have
been identified through bio-informatic approaches, but so
far no experimental evidence has been obtained to dem-
onstrate targeting of host mRNAs by the MCPyV miRNA
or to demonstrate a role for any of these putative target
genes in the viral life cycle. Among these predicted targets
are AMBRA1, RBM9, MECP2, PIK3CD, PSME3 and
RUNXI1 (Table 1) [68].

Polyomaviruses influence host miRNAs

One of the mechanisms viruses use to disturb the
physiological functions of host cells is by altering the
levels of host miRNAs. Since miRNAs have been shown
to function as oncogenes or tumor suppressors, this
mechanism might be of particular interest for tumor-
inducing polyomaviruses, such as SV40 and MCPyV
[87]. Indeed, it was shown that expression of SV40 stAg
results in an induction of the human hsa-miR-27a in a
PP2A dependent way, with hsa-miR-27a being a potent
tumor promoter involved in cell proliferation [88]. Simi-
lar examples of virally controlled host miRNA expres-
sion exists for the human papillomavirus HPV-31 where
the virus appeared to downregulate the expression of
hsa-miR-145, which in turn results in increased viral
genome amplification [89]. A more general control of
host miRNA expression by polyomavirus LTAg might also
not be excluded as this viral protein is known to affect
RNA polymerase II-dependent transcription, which is
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Figure 3 Overview of viral and host miRNA functions related to Polyomavirus infection. Polyomavirus encoded miRNAs exert an
autoregulatory role through targeting of LTAg, which plays an essential role in viral replication. This viral miRNA also plays a role in regulating the
host immune response by targeting host factors, such as the stress-induced ligand ULBP3, that are essential for recognition of infected cells by
the immune system. Host miRNAs can mimic the polyomavirus miRNA, thereby also influencing the expression of LTAg and consequently viral
replication, but they might also affect viral protein synthesis by targeting the viral transcripts through binding at the 3'UTR of the viral transcripts.
Next to this virus specific role, miRNAs are also shown to play a more general role in the immune response upon viral infection.

Immune recognition

required for production of pri-miRNAs [48,90]. It will
be of particular interest to see whether miRNA profil-
ing studies where infected and non-infected cells are
compared, reveal new host miRNAs affected by a spe-
cific polyomavirus. Similar studies with other viruses
have demonstrated that this might be a successful ap-
proach to identify new host miRNAs involved in viral
infection [91-94].

Host miRNAs influence polyomaviruses

Although still a rather unexplored domain in the poly-
omavirus field, work on other viruses has shown that
not only the virus autoregulates viral mRNAs or regu-
lates cellular mRNAs or miRNAs, but that also host
miRNAs play an important role in the regulation of the
expression of specific viral gene products (Figure 3).
This might also play a role during viral latency or
tumorigenesis. One mechanism the host might employ
is the expression of functional orthologs of the viral
miRNA. For SV40 it was shown that hsa-miR-423-5p
may act as a functional ortholog of SV40-miR-S1-5p,
which shares identical seed sequence [85]. Together with
the fact that the viral miRNA downregulates LTAg, this
would then imply that hsa-miR-423-5p negatively regu-
lates this antigenic protein, thereby reducing immune re-
sponse against the virus and limiting the viral replication

rate [64]. Whereas SV40 is the only polyomavirus so far
for which this has been demonstrated, the existence of
these functional orthologs has also been described for the
Human Immunodeficiency Virus-1 (HIV-1) [85], the Her-
pesviruses Kaposi’s sarcoma-associated herpesvirus
and Marek’s Disease Virus [95-98], and Epstein-Barr
virus [99]. Although the existence of these functional
orthologs appears to be a more general phenomenon, it is
not clear whether these host miRNAs really evolved as a
mechanism to combat specific viral infections or whether
the virus — which likely evolves faster — in fact evolved to
mimic specific host miRNAs.

Although the host can affect the viral life cycle through
miRNAs that mimic the viral miRNAs, the host cell
might also express miRNAs that specifically recognize
sequences in the viral genome. This mechanism is of
particular interest for disease related viruses as this
cellular miRNA might be a promising drug target.
The latter has been demonstrated already for hsa-miR
-122 in the context of Hepatitis C Virus (HCV) infec-
tion [100,101]. This host miRNA is highly abundant in
the liver and appears to bind specific sites in the HCV
genome, thereby protecting it from nucleolytic deg-
radation [102]. Administration of locked nucleic acid-
modified antisense oligonucleotides resulted in effective
viral suppression in vivo [100,103]. So far, no miRNAs
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have been identified that target specific polyomavirus
sequences.

Recent work has also identified hsa-miR-155 as an im-
portant host cell miRNA involved in a more general role
in the immune response upon viral infection. Two re-
ports have shown independently that this miRNA is
essential for CD8" T cell responses upon infection with
lymphocytic choriomeningitis virus (LCMV), where it
appeared to influence T cell survival upon viral infection
[104,105]. Whether hsa-miR-155 also plays a role in the
immune control of polyomaviruses and more specifically
in polyomavirus-induced diseases that are dependent on
changes in the host immune system is of particular
interest but remains to be determined.

Conclusions

Although miRNAs have only been discovered 20 years
ago, they have been recognized as important regulators
of several cellular processes. We have provided an over-
view of what is known so far on the role miRNAs play
in the biology of polyomaviruses. Virally encoded
miRNAs have been described in several polyomavirus
and despite the fact that different locations on the gen-
ome have been discovered, they all appear to target the
early mRNA transcript encoding the T-antigens. This
conserved functionality already indicated an important
role for these miRNAs but only recently it was discov-
ered how this relates to control of viral replication. Next
to this autoregulatory role, the polyomavirus miRNAs
have been shown to target host factors as well, thereby
possibly modulating the host response. It will be inter-
esting for future work to better characterize these regu-
latory mechanisms, also in other polyomaviruses, as well
as to study the role these play in polyomavirus related
diseases. The role of host miRNAs in polyomavirus in-
fection has only been studied to a very small extent so
far. As was already the case for other viruses, it is likely
that potential antiviral drug targets can be found among
miRNAs, emphasizing the therapeutic potential of anti-
miRs in polyomavirus related diseases. Taken together,
miRNAs are shown to be essential factors in the control
of polyomavirus replication and the interaction with
their host. Whereas the foundation in understanding the
role of miRNAs in polyomavirus biology has been laid
now, this remains a rather unexplored domain with lots
of potential for future research.
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