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Abstract
Background: The reovirus M1 genome segment encodes the µ2 protein, a structurally minor
component of the viral core, which has been identified as a transcriptase cofactor, nucleoside and
RNA triphosphatase, and microtubule-binding protein. The µ2 protein is the most poorly
understood of the reovirus structural proteins. Genome segment sequences have been reported
for 9 of the 10 genome segments for the 3 prototypic reoviruses type 1 Lang (T1L), type 2 Jones
(T2J), and type 3 Dearing (T3D), but the M1 genome segment sequences for only T1L and T3D
have been previously reported. For this study, we determined the M1 nucleotide and deduced µ2
amino acid sequences for T2J, nine other reovirus field isolates, and various T3D plaque-isolated
clones from different laboratories.

Results: Determination of the T2J M1 sequence completes the analysis of all ten genome segments
of that prototype. The T2J M1 sequence contained a 1 base pair deletion in the 3' non-translated
region, compared to the T1L and T3D M1 sequences. The T2J M1 gene showed ~80% nucleotide
homology, and the encoded µ2 protein showed ~71% amino acid identity, with the T1L and T3D
M1 and µ2 sequences, respectively, making the T2J M1 gene and µ2 proteins amongst the most
divergent of all reovirus genes and proteins. Comparisons of these newly determined M1 and µ2
sequences with newly determined M1 and µ2 sequences from nine additional field isolates and a
variety of laboratory T3D clones identified conserved features and/or regions that provide clues
about µ2 structure and function.

Conclusions: The findings suggest a model for the domain organization of µ2 and provide further
evidence for a role of µ2 in viral RNA synthesis. The new sequences were also used to explore the
basis for M1/µ2-determined differences in the morphology of viral factories in infected cells. The
findings confirm the key role of Ser/Pro208 as a prevalent determinant of differences in factory
morphology among reovirus isolates and trace the divergence of this residue and its associated
phenotype among the different laboratory-specific clones of type 3 Dearing.
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Background
RNA viruses represent the most significant and diverse
group of infectious agents for eukaryotic organisms on
earth [1,2]. Virtually every RNA virus, except retroviruses,
must use an RNA-dependent RNA polymerase (RdRp) to
copy its RNA genome into progeny RNA, an essential step
in viral replication and assembly. The virally encoded
RdRp is not found in uninfected eukaryotic cells and
therefore represents an attractive target for chemothera-
peutic strategies to combat RNA viruses. A better under-
standing of the structure/function relationships of RNA-
virus RdRps has been gained from recent determinations
of X-ray crystal structures for several of these proteins,
including the RdRps of poliovirus, hepatitis C virus, rabbit
calicivirus, and mammalian orthoreovirus [3-6]. How-
ever, the diverse and complex functions and regulation of
these enzymes, including their interactions with other
viral proteins and cis-acting signals in the viral RNAs,
determine that we have hardly scratched the surface for
understanding most of them.

The nonfusogenic mammalian orthoreoviruses (reovi-
ruses) are prototype members of the family Reoviridae,
which includes segmented double-stranded RNA
(dsRNA) viruses of both medical (rotavirus) and eco-
nomic (orbivirus) importance (reviewed in [7-9]). Reovi-
ruses have nonenveloped, double-shelled particles
composed of eight different structural proteins encasing
the ten dsRNA genome segments. Reovirus isolates (or
"strains") can be grouped into three serotypes, repre-
sented by three commonly studied prototype isolates:
type 1 Lang (T1L), type 2 Jones (T2J), and type 3 Dearing
(T3D). Sequences have been reported for all ten genome
segments of T1L and T3D, as well as for nine of the ten
segments of T2J (all but the M1 segment) (e.g., see
[10,11]). Each of these segments encodes either one or
two proteins on one of its strands, the plus strand. After
cell entry, transcriptase complexes within the infecting
reovirus particles synthesize and release full-length,
capped plus-strand copies of each genome segment. These
plus-strand RNAs are used as templates for translation by
the host machinery as well as for minus-strand synthesis
by the viral replicase complexes. The latter process pro-
duces the new dsRNA genome segments for packaging
into progeny particles. The particle locations and func-
tions of most of the reovirus proteins have been deter-
mined by a combination of genetic, biochemical, and
biophysical techniques over the past 50 years (reviewed in
[8]).

Previous studies have identified the reovirus λ3 protein,
encoded by the L1 genome segment, as the viral RdRp
[6,12-14]. Protein λ3 is a minor component of the inner
capsid, present in only 10–12 copies per particle [15]. It
has been proposed to bind to the interior side of the inner

capsid, near the icosahedral fivefold axes, and recent work
has precisely localized it there [16,17]. In solution, puri-
fied λ3 mediates a poly(C)-dependent poly(G)-polymer-
ase activity, but it has not been shown to use virus-specific
dsRNA or plus-strand RNA as template for plus- or minus-
strand RNA synthesis, respectively [14]. This lack of activ-
ity with virus-specific templates suggests that viral or cel-
lular cofactors may be required to make λ3 fully
functional. Within the viral particle, where only viral pro-
teins are known to reside, these cofactors are presumably
viral in origin. The crystal structure of λ3 has provided
substantial new information about the organization of its
sequences and has suggested several new hypotheses
about its functions in viral RNA synthesis and the possible
roles of cofactors in these functions [6]. Notably, crystal-
lized λ3 uses short viral and nonviral oligonucleotides as
templates for RNA synthesis to yield short dsRNA prod-
ucts [6].

The reovirus µ2 protein has been proposed as a tran-
scriptase cofactor, but it remains the most functionally
and structurally enigmatic of the eight proteins found in
virions. Like λ3, µ2 is a minor component of the inner
capsid, present in only 20–24 copies per particle [15]. It is
thought to associate with λ3 in the particle interior, in
close juxtaposition to the icosahedral fivefold axes, but
has not been precisely localized there [16,17]. A recent
study has shown that purified µ2 and λ3 can interact in
vitro [18]. The M1 genome segment that encodes µ2 is
genetically associated with viral strain differences in the in
vitro transcriptase and nucleoside triphosphatase
(NTPase) activities of viral particles [19,20]. Recent work
with purified µ2 has shown that it can indeed function in
vitro as both an NTPase and an RNA 5'-triphosphatase
[18]. The µ2 protein has also been shown to bind RNA
and to be involved in formation of viral inclusions, also
called "factories", through microtubule binding in
infected cells [18,21-23]. Nevertheless, its precise func-
tion(s) in the reovirus replication cycle remain unclear.
Other studies have indicated that the µ2-encoding M1 seg-
ment genetically determines the severity of cytopathic
effect in mouse L929 cells, the frequency of myocarditis in
infected mice, the levels of viral growth in cardiac myo-
cytes and endothelial cells, the degree of organ-specific
virulence in severe combined immunodeficiency mice,
and the level of interferon induction in cardiac myocytes
[24-29]. The complete sequence of the M1 segment has
been reported for both T1L and T3D [23,30,31]. However,
computer-based comparisons of the M1 and µ2 sequences
to others in GenBank have previously failed to show sig-
nificant homology to other proteins, so that no clear indi-
cations of µ2 function have come from that approach.
Nevertheless, small regions of sequence similarity to NTP-
binding motifs have been identified near the middle of
µ2, and recent work has indicated that mutations in one
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of these regions indeed abrogates the triphosphatase
activities of µ2 [18,20].

For this study, we performed nucleotide-sequence deter-
minations of the M1 genome segments of reovirus T2J,
nine other reovirus field isolates, and reovirus T3D clones
obtained from several different laboratories. The determi-
nation of the T2J M1 sequence completes the sequence
determination of all ten genome segments of that proto-
type strain. We reasoned that comparisons of additional
M1 and µ2 sequences may reveal conserved features and/
or regions that provide clues about µ2 structure and func-
tion. The findings provide further evidence for a role of µ2
in viral RNA synthesis. We also took advantage of the
newly available sequences to explore the basis for M1/µ2-
determined strain differences in the morphology of viral
factories in reovirus-infected cells.

Results and Discussion
M1 nucleotide and µ2 amino acid sequences of reovirus 
T2J and nine other field isolates
We determined the nucleotide sequence of the M1
genome segment of reovirus T2J to complete the sequenc-
ing of that isolate's genome. T2J M1 was found to be 2303
base pairs in length (GenBank accession no. AF124519)
(Table 1). This is one shorter than the M1 segments of reo-
viruses T1L and T3D [23,30,31], due to a single base-pair
deletion in T2J corresponding to position 2272 in the 3'
nontranslated region of the T1L and T3D plus strands
(Fig. 1, Table 1). Like those of T1L and T3D, the T2J-M1
plus strand contains a single long open reading frame,
encoding a µ2 protein of 736 amino acids (Fig. 2, Table
1), having the same start and stop codons (Fig. 1), and

having a 5' nontranslated region that is only 13 nucle-
otides in length (Table 1). Because of the single-base dele-
tion described above, the 3' nontranslated region of the
T2J M1 plus strand is only 82 nucleotides in length, com-
pared to 83 for T1L and T3D (Table 1). Regardless, M1 has
the longest 3' nontranslated region of any of the genome
segments of these viruses, the next longest being 73 nucle-
otides in S3 (reviewed in [32]).

To gain further insights into µ2 structure/function rela-
tionships, we determined the M1 nucleotide sequences of
nine other reovirus field isolates [33,34]. The M1 seg-
ments of each of these viruses were found to be 2304 base
pairs in length (GenBank accession nos. AY428870 to
AY428877 and AY551083), the same as T1L and T3D M1
(Fig. 1). Like those of T1L, T2J, and T3D, the M1 plus
strand from each of the field isolates contains a single
long open reading frame, again encoding a µ2 protein of
736 amino acids (Fig. 2) and having the same start and
stop codons (Fig. 1). Their 5' and 3' nontranslated regions
are therefore the same lengths as those of T1L and T3D M1
(Table 1). As part of this study, we also determined the M1
nucleotide sequences of the reovirus T1L and T3D clones
routinely used in the Coombs laboratory. We found these
sequences to be identical to those recently reported for the
respective Nibert laboratory clones [23].

Further comparisons of the M1 nucleotide sequences
The T2J M1 genome segment shares 71–72% homology
with those of both T1L and T3D (Table 2). This makes T2J
M1 the most divergent of all nonfusogenic mammalian
orthoreovirus genome segments examined to date, with
the exception of the S1 segment, which encodes the

Table 1: Features of M1 genome segments and µ2 proteins from different reovirus isolates

Reovirus isolatea

M2 or µ2 
propertyb

T1Lc T2J T3Dd T3De T1C11 T1C29 T1N84 T2N84 T2S59 T3C12 T3C18 T3C44 T3N83

Accession no.: X59945 AF124519 M27261 AF461683 AY428870 AY428871 AY428872 AY428873 AY428874 AY551083 AY428875 AY428876 AY428877

total nuc 2304 2303 2304 2304 2304 2304 2304 2304 2304 2304 2304 2304 2304
5' NTR 13 13 13 13 13 13 13 13 13 13 13 13 13
3' NTR 83 82 83 83 83 83 83 83 83 83 83 83 83
total AA 736 736 736 736 736 736 736 736 736 736 736 736 736
mass (kDa) 83.3 84.0 83.3 83.2 83.2 83.3 83.4 83.3 83.5 83.2 83.3 83.3 83.4
pI 6.92 7.44 6.98 6.89 7.10 7.09 6.98 6.92 6.96 6.89 6.92 7.09 7.01
Asp+Glu 85 84 85 85 84 84 85 85 84 85 85 84 85
Arg+Lys+His 102 105 102 101 103 103 102 102 100 101 102 103 103

a Abbreviations defined in text.
b nuc, nucleotides; NTR, nontranslated region; AA, amino acids; pI, isoelectric point.
c All indicated values are the same for the T1L M1 and µ2 sequences obtained for the Brown laboratory clone [31] (indicated GenBank accession 
number), the Nibert laboratory clone [23]; GenBank accession no. AF461682), and the Coombs laboratory clone (this study).
d T3D M1 and µ2 sequences for the Joklik laboratory clone [30] (indicated GenBank accession number), and the Cashdollar laboratory clone [23]; 
GenBank accession no. AF461684).
e T3D M1 and µ2 sequences for the Nibert laboratory clone [23] and the Coombs laboratory clone (this study).
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attachment protein σ1 and which shows less than 60%
nucleotide sequence homology between serotypes
[35,36]; reviewed in [11]. In contrast, the homology
between T1L and T3D M1 is ~98%, among the highest val-
ues seen to date between reovirus genome segments from
distinct field isolates [11,31,34,37-39].

The M1 genome segments of the nine other reovirus iso-
lates examined in this study are much more closely related

to those of T1L and T3D than to that of T2J (Table 2), as
also clearly indicated by phylogenetic analyses (Fig. 3 and
data not shown). Such greater divergence of the gene
sequences of T2J has been observed to date with other seg-
ments examined from multiple reovirus field isolates
[11,34,37-39]. Type 2 simian virus 59 (T2S59) has the
next most broadly divergent M1 sequence, but it is no
more similar to the M1 sequence of T2J than it is to that
of the other isolates (Table 2, Fig. 3). In sum, the results of

Sequences near the 5' (A) and 3' (B) ends of the M1 plus strands of 14 reovirus isolatesFigure 1
Sequences near the 5' (A) and 3' (B) ends of the M1 plus strands of 14 reovirus isolates. The start and stop codons are indi-
cated by bold and underline, respectively. The one-base deletion in the 3' noncoding region of the T2J sequence is indicated by 
a triangle. Positions at which at least one sequence differs from the others are indicated by dots. GenBank accession numbers 
for corresponding sequences are indicated between the clones' names and 5' sequences in "A". Clones are: T1L (type 1, Lang), 
T1C11 (type 1, clone 11), T1C29 (type 1, clone 29), T1N84 (type 1, Netherlands 1984), T2J (type 2, Jones), T2N84 (type 2, 
Netherlands 1984), T2S59 (type 2, simian virus 59), T3D (type 3, Dearing), T3C12 (type 3, clone 12), T3C18 (type 3, clone 18), 
T3C44 (type 3, clone 44), and T3N83 (type 3, Netherlands 1983). T1L clones were obtained from Dr. E.G. Brown (Brown) or 
our laboratories (Coombs/Nibert). T3D clones were obtained from Drs. W.K. Joklik, L.W. Cashdollar (Joklik/Cashdollar) and 
our laboratories (Coombs/Nibert).

B

! !! ! ! !!! !!! ! !! ! L 3'

T1L     GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCCCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T1L     GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCCCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T2J     GCGUGAGUCGGGUCAUGCAACGUCGAACACCUGCCCCAUGGUCAAUGGGGGUAGGGG CGGGCUAAGACUACGUACGCGCUUCAUC  2303

T3D     GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCUCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T3D     GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCUCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T1C11   GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCCCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T1C29   GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCCCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T1N84   GUGUGAUCCGUGUCAUGCGUAGUGUGACACCUGCCCCUGGGUCAACGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T2N84   GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCCCCUGGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T2S59   GCGUGAUCCGUGACAUGCGUAGUAUGACACCUGCCCCCAGGUCAAAGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T3C12   GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCUCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T3C18   GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCCCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T3C44   GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCCCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

T3N83   GCGUGAUCCGUGACAUGCGUAGUGUGACACCUGCCCCUAGGUCAAUGGGGGUAGGGGGCGGGCUAAGACUACGUACGCGCUUCAUC  2304

A

Accession
No.  5' ! !

T1L(Brown)                X59945     GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T1L(Coombs/Nibert)       AF461682    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T2J                      AF124519    GCUAUUCGCGGUCAUGGCUUACGUCGCAGUUCCUGCGGUC  40

T3D(Joklik/Cashdollar)    M27261     GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T3D(Coombs/Nibert)       AF461683    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T1C11                    AY428870    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T1C29                    AY428871    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T1N84                    AY428872    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T2N84                    AY428873    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T2S59                    AY428874    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T3C12                    AY551083    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T3C18                    AY428875    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T3C44                    AY428876    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

T3N83                    AY428877    GCUAUUCGCGGUCAUGGCUUACAUCGCAGUUCCUGCGGUG  40

5'
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Alignment of the deduced µ2 amino acid sequences of T1L, T2J, T3D, and various field isolatesFigure 2
Alignment of the deduced µ2 amino acid sequences of T1L, T2J, T3D, and various field isolates. The single-letter amino acid 
code is used, and only the T1L µ2 sequence from the Brown laboratory is shown in its entirety. For other isolates, only those 
amino acids that differ from this T1L sequence are shown. Clones arranged in same order as in Fig. 1; the second T1L µ2 
sequence is from the Nibert and Coombs laboratories, the first T3D µ2 sequence is from the Joklik and Cashdollar laborato-
ries, and the second T3D µ2 sequence is from the Nibert and Coombs laboratories. Amino acid positions are numbered above 
the sequences. Some symbols represent various nonconservative changes among the isolates: *, change involving a charged res-
idue; § change involving an aromatic residue; †, change involving a proline residue; ‡, change involving a cysteine residue. Resi-
due 208, which has been previously shown to affect microtubule association by µ2, is indicated by a filled diamond. Residues 
410–420 and 446–449, which have been previously identified as NTP-binding motifs are indicated by filled circles. Consecutive 
runs of wholly conserved residues ≥ 15 amino acids in length are indicated by the lines numbered 1 to 8.

                10        20        30        40        50        60        70        80        90       100       110       120
1 2                                3                             

T1L     MAYIAVPAVVDSRSSEAIGLLESFGVDAGADANDVSYQDHDYVLDQLQYMLDGYEAGDVIDALVHKNWLHHSVYCLLPPKSQLLEYWKSNPSVIPDNVDRRLRKRLMLKKDLRKDDEYNQLARAF

T2J        V                      T TKEES  Q                            YR    E                    A   ES          M             V

T3D                                                                                                 A   
T1C11                                                                                               A
T1C29                                                                                               A
T1N84                                                           S                                   A
T2N84                                                                                               A
T2S59                              V      I                             Y                           A

T3C18                                                                                               A
   

T3C44                                                                                               A
T3N83                               R                                                               A

          130       140       150       160       170       180       190       200       210       220       230       240       250    
                                                                                                                  4

T1L     KISDVYAPLISSTTSPMTMIQNLNQGEIVYTTTDRVIGARILLYAPRKYYASTLSFTMTKCIIPFGKEVGRVPHSRFNVGTFPSIATPKCFVMSGVDIESIPNEFIKLFYQRVKSVHANILNDIS

T2J      L    T  V  S        SI  NQ   S          S        SA     LNR    Y  N APIG A   I     L S     L S                  R           

T3D                                                                                       S
T1C11    
T1C29                                                                                          Q
T1N84   
T2N84                      V                                       R
T2S59                            N               S         A                 S                                           R    

T3C18    
T3C44                                                                                          Q
T3N83              F     I

T3C12                                                                                               A      

T3C12                                                                                     S                        

∗ ∗∗ ∗
∗

∗

♦∗ ∗ ∗
∗

†§ †

§

T1L     

T3D                                                                                                 A   

               260       270       280       290       300       310       320       330       340       350       360       370
                                          

T1L     PQIVSDMINRKRLRVHTPSDRRAAQLMHLPYHVKRGASHVDVYKVDVVDVLLEVVDVADGLRNVSRKLTMHTVPVCILEMLGIEIADYCIRQEDGMFTDWFLLLTMLSDGLTDRRTHCQYLINPS

T2J       LL   LQ      SS NE KI  I           T     R       F    IK    S      LQ    SVI LI L T      K N                 I     S        

T3D                                                      M F                                            L                        
T1C11                                                      F
T1C29                                                      F I
T1N84                                                 A    F     V                                                          R
T2N84                                                      F
T2S59      I    S      Q                           R                                   L

T3C18                                                      F
T3C44                                                      F I
T3N83                                                      F

T3C12                                                    M F                                            L                      

∗∗∗∗ ‡  ‡∗ §§

          380       390       400       410       420       430       440       450       460       470       480       490       500    
                                             5 6
T1L     SVPPDVILNISITGFINRHTIDVMPDIYDFVKPIGAVLPKGSFKSTIMRVLDSISILGVQIMPRAHVVDSDEVGEQMEPTFEHAVMEIYKGIAGVDSLDDLIKWVLNSDLIPHDDRLGQLFQAFL

T2J      I     I  YVS  T  RV     EM                         EMEV   R    C          R Q                    EE  N   GP      E   K Y S

T3D                                                               I                       Q
T1C11                                 I                              L 
T1C29                  V                                                   I
T1N84                  M
T2N84                  V
T2S59                  V          M                            V        T

T3C18                                 I                              L
T3C44                  V                                                   I
T3N83              F                  I                              L                                             P

T3C12                                                             I                       Q

† ∗∗∗∗∗∗∗∗ ‡ ¤ • ••••• ••• • ••§§ •••

               510       520       530       540       550       560       570       580       590       600       610       620
                                          7
T1L     PLAKDLLAPMARKFYDNSMSEGRLLTFAHADSELLNANYFGHLLRLKIPYITEVNLMIRKNREGGELFQLVLSYLYKMYATSAQPKWFGSLLRLLICPWLHMEKLIGEADPASTSAEIGWHIPRE

T2J              V  H  EE L                              F                                   M        M            D  A I    V     K 

T3D    
T1C11
T1C29                                                                                       S                         L
T1N84
T2N84                                                                                                                            V
T2S59                          F                                                                                      TT          V

T3C18                                                                                                                      V
T3C44                                                                                       S                         L
T3N83

T3C12    

8
†∗†∗ §

               630       640       650       660       670       680       690       700       710       720       730

T1L     QLMQDGWCGCEDGFIPYVSIRAPRLVMEELMEKNWGQYHAQVIVTDQLVVGEPRRVSAKAVIKGNHLPVKLVSRFACFTLTAKYEMRLSCGHSTGRGAAYNARLAFRSDLA

T2J     H              T  V    K  L   R               R E       H RV      M S  I  Y   S  MR M H T    I  SS  G   V   S

T3D                               I                                                                         S
T1C11             K               I
T1C29     V            S          I   R          I                             I                                    C
T1N84                    I V      I                                                       R                           V
T2N84                    I M      I
T2S59                             I                                            I          R     L                   N

T3C18                             I                                                                                  S
T3C44     V            S          I   R          I                             I                                    C
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this study provided little or no evidence for divergence of
the M1 sequences along the lines of reovirus serotype (Fig.
3), consistent with independent reassortment and evolu-
tion of the M1 and S1 segments in nature. Upon consid-
ering the sources of these isolates [34], the results
similarly provided little or no evidence for divergence of
the M1 sequences along the lines of host, geographic
locale, or date of isolation (Fig. 3). These findings are con-
sistent with ongoing exchange of M1 segments among
reovirus strains cocirculating in different hosts and
locales. Similar conclusions have been indicated by previ-
ous studies of other genome segments from multiple reo-
virus field isolates [11,34,37-39]. The M1 nucleotide
sequence of type 3 clone 12 (T3C12) is almost identical to
that of the T3D clone in use in the Coombs and Nibert
laboratories, with only a single silent change (U→C) at
plus-strand position 1532 (i.e., 99.9+% homology). How-
ever, several of the T3C12 genome segments show distin-
guishable mobilities in polyacrylamide gels (data not
shown), confirming that T3C12 is indeed a distinct
isolate.

Further comparisons of the µ2 protein sequences
The T2J µ2 protein shares 80–81% homology with those
of both T1L and T3D (Table 2, Fig. 2). Consistent with the
M1 nucleotide sequence results, this makes T2J µ2 the

most divergent of all nonfusogenic mammalian orthoreo-
virus proteins examined to date, with the exception of the
S1-encoded σ1 and σ1s proteins, which show less than
55% amino acid sequence homology between serotypes
[35,36]; reviewed in [11]. In contrast, the homology
between T1L and T3D µ2 approaches 99%, among the
highest values seen to date between reovirus genome seg-
ments from distinct isolates [11,31,34,37-39]. Also
consistent with the M1 nucleotide sequence results, the µ2
proteins of the nine other reovirus isolates examined in
this study are much more closely related to those of T1L
and T3D than to that of T2J (Table 2, Fig. 3), affirming the
divergent status of the T2J µ2 protein. The µ2 protein
sequence of T3C12 is identical to that of the T3D clone in
use in the Coombs and Nibert laboratories. In addition,
the µ2 protein sequence of T1C29 is identical to that of
T3C44. These are the first times that reovirus proteins
from distinct isolates have been found to share identical
amino acid sequences [11,32,34,37-39], reflecting the
high degree of µ2 conservation.

The encoded µ2 proteins of the twelve reovirus isolates are
all calculated to have molecular masses between 83.2 and
84.0 kDa, and isoelectric points between 6.89 and 7.44
pH units (Table 1). This range of isoelectric points is the
largest yet seen among reovirus proteins other than σ1s

Table 2: Pairwise comparisons of M1 genome segment and µ2 protein sequences from different reovirus isolates

Identity (%) compared with reovirus isolatea

Virus 
isolate

T1Lb T1Lc T2J T3Dd T3De T1C11 T1C29 T1N84 T2N84 T2S59 T3C12 T3C18 T3C44 T3N83

T1Lb -- 99.9f 80.8 98.6 98.8 99.2 98.0 98.4 98.8 96.3 98.8 99.0 98.0 98.2
T1Lc 99.9f -- 81.0 98.8 98.9 99.3 98.1 98.5 98.9 96.2 98.9 99.2 98.1 98.4
T2J 71.6 71.6 -- 80.0 80.2 80.4 80.3 80.2 80.4 81.5 80.2 80.3 80.3 80.4
T3Dd 97.8 97.9 70.9 -- 99.6 98.6 97.4 97.8 98.2 95.5 99.6 98.5 97.4 98.0
T3De 97.9 98.0 71.0 99.7 -- 98.8 97.6 98.0 98.4 95.7 100 98.6 97.6 98.1
T1C11 98.7 98.7 71.3 97.1 97.1 -- 98.0 98.4 98.8 96.1 98.8 99.6 98.0 98.8
T1C29 96.3 96.4 71.1 95.8 95.8 95.5 -- 97.3 97.8 95.7 97.6 97.8 100 97.0
T1N84 96.3 96.3 70.8 95.7 95.8 95.9 94.5 -- 98.5 95.7 98.0 98.2 97.3 97.4
T2N84 97.1 97.1 71.0 96.5 96.6 96.7 95.4 96.5 -- 96.2 98.4 98.6 97.8 97.8
T2S59 89.8 89.9 71.3 89.2 89.3 89.2 89.4 89.1 89.7 -- 95.7 95.9 95.7 95.1
T3C12 97.8 97.9 71.0 99.7 99.9+ 97.2 95.7 95.7 96.6 89.3 -- 98.6 97.6 98.1
T3C18 98.8 98.9 71.2 97.3 97.4 99.4 95.8 95.8 96.8 89.4 97.4 -- 97.8 98.6
T3C44 96.5 96.6 71.1 95.9 95.9 95.7 99.7 94.6 95.5 89.4 95.9 96.0 -- 97.0
T3N83 97.7 97.8 71.4 96.4 96.4 98.6 94.7 94.9 95.8 88.5 96.4 98.4 95.0 --

a Abbreviations defined in text.
b T1L M1 and µ2 sequences for the Brown laboratory clone [31]; GenBank accession no. X59945).
c T1L M1 and µ2 sequences for the Nibert laboratory clone [23]; GenBank accession no. AF461682) and the Coombs laboratory clone (this study).
d T3D M1 and µ2 sequences for the Joklik laboratory clone [30]; GenBank accession no. M27261), and the Cashdollar laboratory clone [23]; 
GenBank accession no. AF461684).
e T3D M1 and µ2 sequences for the Nibert laboratory clone [23]; GenBank accession no. AF461683) and the Coombs laboratory clone (this study).
f Values for M1-gene sequence comparisons are shown below the diagonal, in bold; values for µ2-protein sequence comparisons are shown above 
the diagonal.
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[11], but is largely attributable to the divergent value of
T2J µ2 (others range only from 6.89 to 7.10). The substan-
tially higher isoelectric point of T2J µ2 is explained by it
containing a larger number of basic residues (excess
arginine) than do the other isolates (Table 1).

Comparisons of the twelve µ2 sequences showed eight
highly conserved regions, each containing ≥ 15 consecu-
tive residues that are identical in all of the isolates (Fig. 2).
The highly conserved regions are clustered in two larger
areas of µ2, spanning approximately amino acids 1–250
and amino acids 400–610. Conserved region 5 in the
400–610 area encompasses the more amino-terminal of
the two NTP-binding motifs in µ2 (Fig. 2) [18,20]. The
other NTP-binding motif is also wholly conserved, but
within a smaller consecutive run of conserved residues.
The region between the two motifs is notably variable
(Fig. 2). Conserved region 5 also contains the less conserv-
ative of the two amino acid substitutions in T1L-derived
temperature-sensitive (ts) mutant tsH11.2 (Pro414→His)
[40]. The pattern of conserved and variable areas of µ2
was also seen by plotting scores for sequence identity in
running windows over the protein length (e.g., [32]). In
addition to the conserved regions described above, areas
of greater than average variation are evident in this plot,
spanning approximately amino acids 250–400 and 610–
736 (the carboxyl terminus) (Fig. 4). The 250–400 area is
notable for regularly oscillating between conserved and

variable regions (Fig. 4). The two large areas of greater-
than-average sequence conservation, spanning approxi-
mately amino acids 1–250 and 400–610 (Fig. 4), are
likely to be involved in the protein's primary function(s).
The more variable, 250–400 area between the two con-
served ones might represent a hinge or linker of mostly
structural importance.

As indicated earlier, µ2 is one of the most poorly under-
stood reovirus proteins, from both a functional and a
structural point of view. For example, atomic structures
are available for seven of the eight reovirus structural pro-
teins, with µ2 being the missing one. Thus, in an effort to
refine the model for µ2 structure/function relationships
based on regional differences, we obtained predictions for
secondary structures, hydropathy, and surface probability.
PHD PredictProtein algorithms suggest that µ2 can be
divided into four approximate regions characterized by
different patterns of predicted secondary structures (Fig.
5C). An amino-terminal region spans to residue 157, a
"variable" region spans residues 157 to 450, a "helix-rich"
region spans residues 450 to 606, and a carboxyl-terminal

Most parsimonious phylogenetic tree based on the M1 nucle-otide sequences of the different reovirusesFigure 3
Most parsimonious phylogenetic tree based on the M1 nucle-
otide sequences of the different reoviruses. Sequences for 
T1L and T3D clones from different laboratories are shown 
(laboratory source(s) in parentheses). Horizontal lines are 
proportional in length to nucleotide substitutions.
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Window-averaged scores for sequence identity among the T1L, T2J, and T3D µ2 proteinsFigure 4
Window-averaged scores for sequence identity among the 
T1L, T2J, and T3D µ2 proteins. Identity scores averaged over 
running windows of 21 amino acids and centered at consecu-
tive amino acid positions are shown. The global identity 
score for the three sequences is indicated by the dashed line. 
Two extended areas of greater-than-average sequence varia-
tion are marked with lines below the plot. Two extended 
areas of greater-than-average sequence conservation are 
marked with lines above the plot. Eight regions of ≥ 15 con-
secutive residues of identity among all twelve µ2 sequences 
from Fig. 2, as discussed in the text, are numbered above the 
plot. The Ser/Pro208 determinant of microtubule binding is 
marked with a filled diamond. The two putative NTP-binding 
motifs are marked with filled circles.
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region spans the sequences after residue 606. The amino-
terminal region contains six predicted α-helices and three
predicted β-strands, and is highly conserved across all
twelve µ2 sequences. The "variable" region is the most
structurally complex and contains numerous interspersed
α-helices and β-strands. The "helix-rich" region contains
seven α-helices and is highly conserved across all twelve
µ2 sequences. The carboxyl-terminal region varies across
all three serotypes. Overall, the µ2 protein is predicted to
be 48% α-helical and 14% β-sheet in composition, mak-
ing it an "α-β " protein according to the CATH designation
[41]. Interestingly, most tyrosine protein kinases with SH2
domains are also "α-β " proteins by this designation. The
T1L and T3D µ2 hydropathy profiles were identical to
each other. Both show numerous regions of similarity to
the hydropathy profile of the T2J µ2. However, there also
are several distinct differences between the T1L and T2J
profiles (Fig. 5). Alterations in amino acid charge at resi-
dues 32, 430 to 432, and 673 in the T2J sequence account
for the major differences in hydrophobicity between T2J
and the other serotypes. In addition, the carboxyl-termi-
nal 66 residues show multiple differences in hydropathy.
The surface probability profiles of each of the three sero-
type's µ2 proteins are identical (Fig. 5) and show numer-
ous regions that are highly predicted to be exposed at the
surface of the protein as well as regions predicted to be
buried.

The MOTIF and FingerPRINTScan programs were used to
compare the highly conserved regions of µ2 with other
sequences in protein data banks (ProSite, Blocks, and Pro-
Domain). The results revealed that several of the con-
served regions in µ2 share limited similarities with
members of the DNA polymerase A family and with the
SH2 domain of tyrosine kinases. The sequence YEAgDV in
µ2, located in conserved region 2 (Fig. 2), is similar to the
"YAD" motif of DNA polymerase A from a number of dif-
ferent bacteria (e.g., YEADDV in Deinococcus radiodurans).
The YAD motif is located in the exonuclease region of
DNA polymerase A, a region which also functions as an
NTPase and enhances the rate of DNA polymerization
[42]. The SH2 domain of tyrosine kinases was the highest
score hit for the conserved regions of µ2 with Finger-
PRINTScan. Four of the five motifs in the 100 amino acid
SH2 domain matched the µ2 sequence. The SH2 domain
mediates protein-protein interactions through its capacity
to bind phosphotyrosine [43]. The protein motifs found
by focusing on the conserved regions of µ2 provide sup-
portive evidence that this protein is involved in nucleotide
binding and metabolism. However, the described similar-
ities did not match with greater than 90% certainty and no
other significant homologies were detected. The inability
to identify higher-scoring GenBank similarities, first
noted when sequences of the T3D and T1L M1 genes were

reported [30,31] attests to the uniqueness of this minor
core protein.

Biochemical confirmations
In an effort to provide biochemical confirmation of the
predicted variation in the different isolates' µ2 proteins,
we analyzed the T1L, T2J, and T3D proteins by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and immunoblotting. Despite the slightly larger
molecular mass calculated from its sequence (Table 1),
T2J µ2 displayed a slightly smaller relative molecular
weight on gels than T1L and T3D µ2 (Fig. 6A). This aber-
rant mobility may reflect the higher isoelectric point of
T2J µ2 (Table 1). Polyclonal anti-µ2 antibodies that had
been raised against purified T1L µ2 [44] reacted strongly
with both T1L and T3D µ2, but only weakly with T2J µ2
(Fig. 6B), despite equal band loading as demonstrated by
Ponceau S staining. These antibody cross-reactivities cor-
related well with the predicted protein homologies (Table
2).

Factory morphologies among reovirus field isolates
We took advantage of the new M1/µ2 sequences to extend
analysis of the role of µ2 in determining differences in
viral factory morphology among reovirus isolates [23].
Sequence variation at µ2 residue Pro/Ser208 was previ-
ously indicated to determine the different morphologies
of T1L and T3D factories: Pro208 is associated with micro-
tubule-anchored filamentous factories, as in T1L and the
Cashdollar laboratory clone of T3D, whereas Ser208 is
associated with globular factories, as in the Nibert labora-
tory clone of T3D [23]. For the previous study we had
already examined the factories of T2J and some of the nine
other isolates used for M1 sequencing above. We
nonetheless newly examined the factories of all ten iso-
lates in the present study, using the same stocks used for
sequencing. T3C12 was the only one of these isolates that
formed globular factories; the remainder, including T2J,
formed filamentous factories (Fig. 7, Table 4). This
finding is consistent with the fact that T3C12 is the only
one of these isolates that has a serine at µ2 residue 208,
like T3D from the Nibert laboratory; the remainder, like
T1L and T3D from the Cashdollar laboratory, have a pro-
line there (Fig. 2, Table 4) [23]. Thus, although the results
identify no additional µ2 residues that may influence fac-
tory morphology, they are consistent with the identifica-
tion of Pro/Ser208 as a prevalent determinant of
differences in this phenotype among reovirus isolates.

Factory morphologies and M1/µ2 sequences of other T3D 
and T3D-derived clones
T3D clones from the Nibert and Cashdollar laboratories
have been shown to exhibit different factory morpholo-
gies based on differences in the microtubule-binding
capacities of their µ2 proteins and the presence of either
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Secondary structure predictions of µ2 proteinFigure 5
Secondary structure predictions of µ2 protein. (A) Hydropathicity index predictions of T2J (- - -) and T1L (-----) µ2 proteins, 
superimposed to accentuate similarities and differences. Hydropathy values were determined by the Kyte-Doolittle method 
[72], using DNA Strider 1.2, a window length of 11, and a stringency of 7. (B) Surface probability predictions of the T2J µ2 pro-
tein, determined as per Emini et al. [73], using DNASTAR. The predicted surface probability profiles of T1L and T3D (not 
shown) were identical to T2J. (C) Locations of α-helices and β-sheets were determined by the PHD PredictProtein algorithms 
[74], and results were graphically rendered with Microsoft PowerPoint software. , α-helix;. , β-sheet;—, turn. Differences 
in fill pattern correspond to arbitrary division of protein into four regions; N, amino terminal; V, variable; H, helix-rich; C, car-
boxyl terminal. The locations of variable regions are indicated by the thick lines under the domain representation.
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serine or proline at µ2 residue 208 [23]. We took the
opportunity in this study to examine additional T3D
clones. The clones from some laboratories formed
globular factories in infected cells whereas those from
other laboratories or the American Type Culture
Collection formed filamentous factories (Fig. 8, Table 5).
T3D-derived ts mutants tsC447, tsE320, and tsG453 [45]
formed filamentous factories (Fig. 8, Table 5). Other ts
mutants were not examined; however, [46] have shown
evidence that tsF556 [45] forms filamentous factories as
well.

We additionally determined the M1 sequences of the
wild-type and ts T3D clones newly tested for factory mor-
phology. All clones with globular factories have a serine at
µ2 position 208 whereas all those with filamentous facto-
ries have a proline there (Table 5). These findings provide
further evidence for the influence of residue 208 on this
phenotypic difference.

All wild-type T3D clones with globular factories were
recently derived from a Fields laboratory parent whereas
all wild-type or ts T3D clones with filamentous factories

were derived from parents in other laboratories.
(Although extensively characterized by both Fields (e.g.,
[47,48]) and Joklik (e.g., [49,50]), the original T3D-
derived ts mutants in groups A through G were generated
in the Joklik laboratory [45]). This correlation suggests
that formation of filamentous factories is the ancestral
phenotype of reovirus T3D and that the Ser208 mutation
in T3D µ2 was established later, in the Fields laboratory.
As we noted in a previous study [23], several other labora-
tories reported evidence for filamentous T3D factories in
the 1960's (e.g., [51,52]), following its isolation in 1955
[53]. Since microtubules were noted to be commonly
associated with T3D factories in Fields laboratory publica-
tions from as late as 1973 [54], but not in one from 1979
[55], the µ2 Ser208 mutation was probably established in,
or introduced into, that laboratory during the middle
1970's. Investigators should be alert to these different lin-
eages of T3D and their derivatives for genetic studies. For
example, reassortant 3HA1 [56] contains a T3D M1
genome segment derived from clone tsC447, and its fac-
tory phenotype is filamentous (data not shown).

Additional genome-wide comparisons of T1L, T2J, and 
T3D
Several types of genome-wide comparisons of T1L, T2J,
and T3D have been reported previously [11]. For this
study we examined the positions and types of nucleotide
mismatches in these prototype isolates in order to gain a
more comprehensive view of the evolutionary divergence
of their protein-coding sequences. Most mismatches
between T2J and either T1L or T3D segments, ~68%, are
in the third codon base position, while ~21% are in the
first position and ~11% are in the second position. Each
of these mismatch percentages was converted to an evolu-
tionary divergence value by multiplying mismatch
percentage by 1.33 [31] (Table 3). These values have been
used to argue that the homologous T1L and T3D genome
segments diverged from common ancestors at different
times in the past, with the M1 and L3 segments having
diverged most recently and the M2, S1, S2, and S3 seg-
ments having diverged longer ago [31]. The consistently
high values for divergence at third codon base positions
among pairings with T2J genome segments (Table 3) indi-
cate that all ten T2J segments diverged from common
ancestors substantially before their respective T1L and
T3D homologs. Relative numbers of synonymous and
nonsynonymous nucleotide changes identified in pair-
wise comparisons of the coding sequences of these iso-
lates (Table 3) support the same conclusion.

The types of amino acid substitutions within each of the
prototype isolates' proteins were also examined. Pairwise
analyses showed that most substitutions in most proteins
were conservative (Table 3). Nonconservative substitu-
tions were relatively rare in most proteins' pair-wise com-

SDS-PAGE and immunoblot analyses of virion and core particlesFigure 6
SDS-PAGE and immunoblot analyses of virion and core parti-
cles. Proteins from gradient-purified T1L (1), T2J (2), and 
T3D (3) particles were resolved in 5–15% SDS-polyacryla-
mide gels as detailed in Materials and methods. Gels were 
then fixed and stained with Coomassie Brilliant Blue R-250 
and silver (A). Alternatively, proteins from the gels were 
transferred to nitrocellulose, probed with anti-µ2 antiserum 
(polyclonal antibodies raised against T1L µ2, kindly provided 
by E. G. Brown), and detected by chemiluminescence (B). 
Virion proteins are indicated to the left of panel A, except 
for µ2, which is indicated between the panels.
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parisons. For example, comparison of the T1L and T3D µ2
proteins showed none (0.0%) of the 10 amino acid sub-
stitutions were nonconservative, and most T1L:T3D com-
parisons gave low nonconservative substitution values

ranging from 0.1–0.5% of total amino acid residues
within the respective proteins. However, some genes,
most notably M1, M3, and S3, demonstrated higher non-
conservative variation, with values approaching 3.5% of

Viral factory morphology as demonstrated by the distribution of µNS in cells infected with various reovirus isolatesFigure 7
Viral factory morphology as demonstrated by the distribution of µNS in cells infected with various reovirus isolates. CV-1 cells 
were infected at 5 PFU/cell with the isolate indicated above each panel, fixed at 18 h p.i., and immunostained with µNS-specific 
rabbit IgG conjugated to Alexa 594. Size bars, 10 µm.
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total amino acid residues. Most of these higher noncon-
servative substitution values were observed when T2J pro-
teins were compared to either T1L or T3D proteins. In
addition, in many proteins, the majority of nonconserva-
tive substitutions were located within the amino-terminal
portions (first ~20%) of the respective proteins (data not
shown).

The frequencies with which different redundant codons
are used to encode certain mammalian amino acids are
non-random (reviewed in [57]). This phenomenon is
mirrored by different abundances of the complementary
tRNA molecules in mammalian cells. For example, CG
pairs are underrepresented in mammalian genomes and
common in their "rare" codons (see Table 6). A recent
study revealed that many RNA viruses of humans display
mild deviations from host codon-usage frequencies and

that these deviations are more prominent among viruses
with segmented genomes [57]. However, reoviruses were
not included in that study. By examining reovirus isolates
T1L, T2J, and T3D, for which whole-genome sequences
are now available, we found that codons that qualify as
rare in mammals are not rare in reovirus (Table 6). More-
over, the few codons that qualify as rare in reovirus (ACC,
AGC, CCC, CGG, CUC, and GCC; data not shown) are
common in mammals. The basis and significance of these
deviations remain unknown, but could have impacts on
the rates of translation of reovirus proteins. It is perhaps
notable in this regard that the four most highly expressed
reovirus proteins (µ1, σ3, µNS, and σNS) have the lowest
average frequencies of codons that are rare in mammals
(Table 6). Thus, incorporation of rare codons into reovi-
rus coding sequences could be a mechanism of dampen-
ing the expression of certain viral proteins.

Table 3: Pairwise comparisons of variation at different codon positions in reovirus genome segments

Variation (%) in the long open reading frame of genome segment

Codon position Isolate pair L1 L2 L3 M1 M2 M3 S2 S3 S4

firsta T1L:T2J 16.9 19.9 12.2 24.6 11.1 25.3 13.7 25.5 13.1
T2J:T3D 16.7 20.4 12.7 26.1 10.7 25.0 14.0 25.5 13.9
T1L:T3D 2.4 15.4 1.4 1.5 6.0 7.6 6.1 6.6 4.0

seconda T1L:T2J 5.3 8.0 3.3 11.8 1.7 10.0 4.1 8.4 5.1
T2J:T3D 5.1 7.5 3.2 11.8 1.7 9.6 4.1 8.0 5.5
T1L:T3D 0.8 3.5 0.3 0.4 2.1 2.0 0.0 2.2 1.1

thirda T1L:T2J 77.1 83.7 79.4 80.1 81.5 81.2 74.0 79.1 73.8
T2J:T3D 76.7 77.4 79.1 81.0 82.7 83.0 73.0 73.9 76.7
T1L:T3D 12.9 76.1 7.5 6.5 53.3 39.2 53.6 48.1 21.9

syn.b T1L:T2J 88.3 90.2 89.6 85.8 90.0 87.1 83.8 90.2 81.9
T2J:T3D 87.5 84.2 89.3 87.0 89.3 89.8 83.6 85.4 84.2
T1L:T3D 15.0 85.9 8.8 7.9 59.3 46.4 63.1 58.2 25.8

nonsyn.b T1L:T2J 5.9 9.1 3.8 12.6 2.6 11.8 4.8 10.2 6.2
T2J:T3D 5.9 8.9 3.9 13.1 3.2 11.5 4.7 9.6 6.8
T1L:T3D 0.8 5.0 0.3 0.5 1.2 2.0 0.7 1.3 1.3

cons.c T1L:T2J 60.0 66.3 57.1 63.8 50.0 60.6 50.0 60.8 73.5
5.0 8.7 2.5 12.2 1.3 10.7 2.9 8.5 6.8

T2J:T3D 62.7 64.5 56.1 64.6 65.2 60.5 52.0 60.8 71.1
5.1 8.6 2.5 12.9 2.1 10.0 3.1 8.5 7.4

T1L:T3D 36.4 77.4 88.9 80.0 50.0 62.5 100 40.0 63.6
0.6 5.6 0.6 1.1 1.1 2.8 1.2 1.0 1.9

noncon.c T1L:T2J 18.1 10.7 17.9 17.0 11.1 18.9 20.8 17.6 14.7
1.5 1.4 0.8 3.3 0.3 3.3 1.2 2.5 1.4

T2J:T3D 18.6 9.9 19.3 16.3 13.0 16.8 20.0 15.7 21.1
1.5 1.3 0.9 3.3 0.4 2.8 1.2 2.2 2.2

T1L:T3D 18.2 8.6 11.1 0.0 12.5 3.1 0.0 20.0 27.3
0.3 0.6 0.1 0.0 0.3 0.1 0.0 0.5 0.8

S1 not included because of uncertainty in where to place gaps.
a Values determined for each pairwise comparison as: # base changes / total such positions × 100.
b Values determined as # of observed changes/ # of positions at which changes could have occurred × 100.
c Upper value indicates proportion of all amino acid substitutions that are conservative or nonconservative (using CLUSTAL W analysis with 
BLOSUM weighting); semi-conservative substitutions not included. Lower bold value indicates proportion of indicated types of alterations as a 
percentage of total number of amino acids within whole protein.
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Methods
Cells and viruses
Reoviruses T1L, T2J, T3D, and T3C12 were Coombs and/
or Nibert laboratory stocks. Other reovirus isolates were
provided by Dr. T. S. Dermody (Vanderbilt University).
Virus clones were amplified to the second passage in
murine L929 cell monolayers in Joklik's modified mini-
mal essential medium (Gibco) supplemented to contain
2.5% fetal calf serum (Intergen), 2.5% neonatal bovine
serum (Biocell), 2 mM glutamine, 100 U/ml penicillin,
100 µg/ml streptomycin, and 1 µg/ml amphotericin B,
and large amounts of virus were grown in spinner culture,
extracted with Freon (DuPont) or Vertrel-XF (DuPont),
and purified in CsCl gradients, all as previously described
[19,58].

Sequencing the M1 genome segments
All oligonucleotide primers were obtained from Gibco/
BRL. Genomic dsRNA was extracted from gradient-puri-
fied virions with phenol/chloroform [59]. Strain identity
was confirmed by resolving aliquots of each in 10% SDS-
PAGE gels and comparing dsRNA band mobilities [60].
Oligonucleotide primers corresponding to either the 5'
end of the plus strand or the 5' end of the minus strand
were as previously described [40]. Additional oligonucle-
otides for sequencing were designed and obtained as
needed. cDNA copies of the M1 genes of each virus were
constructed by using the 5' oligonucleotide primers and
reverse transcriptase (Gibco/BRL). The cDNAs were
amplified by the polymerase chain reaction [61] and
resolved in 0.7% agarose gels [59]. The bands correspond-
ing to the 2.3-kb gene were then excised, purified, and

eluted with Qiagen columns, using the manufacterer's
instructions. Sequences of the respective cDNAs were
determined in both directions by dideoxynucleotide cycle
sequencing [62-64], using fluorescent
dideoxynucleotides.

Sequences at the termini of each M1 segment were deter-
mined by one or both of two methods. For some isolates,
sequences near the ends of the segment were determined
by modified procedures for rapid amplification of cDNA
ends (RACE) as previously described [32,65]. In addition,
the sequences at the ends of all M1 segments were deter-
mined in both directions by a modification of the 3'-liga-
tion method described by Lambden et al. [66]. Briefly,
viral genes from gradient-purified virions were resolved in
a 1% agarose gel, and the M segments were excised and
eluted with Qiagen columns as described above.
Oligonucleotide 3'L1 (5'-CCCCAACCCACTTTTTCCAT-
TACGCCCCTTTCCCCC-3'; phosphorylated at the 5' end
and blocked with a biotin group at the 3' end) was ligated
to the 3' ends of the M segments according to the manu-
facterer's directions (Boehringer Mannheim) at 37°C
overnight. The ligated genes were repurified by agarose gel
and Qiagen columns to remove unincorporated 3'L1 oli-
gonucleotide and precipitated overnight with ice-cold eth-
anol. The precipitated genes were dissolved in 4 µl of 90%
dimethyl sulfoxide. cDNA copies of the ligated M1 genes
were constructed by using oligonucleotide 3'L2 (5'-
GGGGGAAAGGGGCGTAATGGAAAAAGTGGGTT-
GGGG-3') and gene-specific internal oligonucleotide
primers designed to generate a product of 0.5 to 1.2 kb in
length. These constructs were amplified by PCR, purified

Table 4: Properties of different reovirus isolates

Virus isolatea Virus factory morphologyb Amino acid at µ2 position 208

T1L filamentousc Proc

T2J filamentousd Pro
T3De filamentousc Proc

T3Df globularc Serc

T1C11 filamentous Pro
T1C29 filamentous Pro
T1N84 filamentousd Pro
T2N84 filamentousd Pro
T2S59 filamentousd Pro
T3C12 globulard Ser
T3C18 filamentousd Pro
T3C44 filamentous Pro
T3N83 filamentousd Pro

a Abbreviations defined in the text.
b Determined by immunofluorescence microscopy as described in the text.
c Reported in Parker et al. [23].
d Reported in supplementary data of Parker et al. [23].
e T3D clone from the Cashdollar laboratory.
f T3D clone from the Nibert laboratory.
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in 1.5% agarose gels, excised, and eluted as described
above. Sequences of these cDNAs were determined with
gene-specific internal oligonucleotides and with
oligonucleotide 3'L3 (5'-GGGGGAAAGGGGCGTAAT-3')
by dideoxy-fluorescence methods.

Sequence analyses
DNA sequences were analyzed with DNASTAR, DNA
Strider, BLITZ, BLAST, and CLUSTAL-W. Phylogenetic
analyses were performed using the PHYLIP programs
http://evolution.gs.washington.edu/phylip.html. DNA-
PARS (parsimony) (Fig. 3) and DNAML (maximum like-
lihood) (data not shown) produced essentially identical

trees. These programs were run using the Jumble option to
test the trees using 50 different, randomly generated
orders of adding the different sequences. In addition,
DNAPENNY (parsimony by brand-and-bound algorithm)
generated a tree with the same branch orders as DNAPARS
and DNAML. RETREE and DRAWGRAM were used to vis-
ualize the tree and to prepare the image for publication.
Final refinement of the image was performed with
Illustrator. Synonymous and nonsynonymous substitu-
tion frequencies were calculated according to the methods
of Nei and Gojobori [67] as applied by Dr. B. Korber at
http://hcv.lanl.gov/content/hcv-db/SNAP/SNAP.html.
Codon frequencies in the M1 coding sequences were
determined using the COUNTCODON program main-
tained at http://www.kazusa.or.jp/codon/countco
don.html. Values for codon frequencies in mammalian
genomes were obtained from the Codon Usage Database
maintained at http://www.kazusa.or.jp/codon/.

Protein sequence analyses were performed using the GCG
programs in SeqWeb version 2 (Accelrys). Multiple
sequence alignments were done with PRETTY. Determina-
tions of molecular weights, isoelectric points, and residue
counts were done with PEPTIDESORT. Determinations of
percent identities in pairwise comparisons were done with
GAP. Plots of sequence identity over running windows of
different numbers of amino acids (Fig. 4 and data not
shown) were generated with PLOTSIMILARITY, and the
image for publication was refined with Illustrator (Adobe
Systems). In addition, protein sequences were analysed
for conservative and nonconservative substitutions by
pairwise CLUSTAL-W analyses, using BLOSUM matrix
weighting [68].

SDS-PAGE
Gradient-purified virus and core samples were dissolved
in electrophoresis sample buffer (0.24 M Tris [pH 6.8],
1.5% dithiothreitol, 1% SDS), heated to 95°C for 3–5
min, and resolved in a 5–15% SDS-PAGE gradient gel
(16.0 × 12.0 × 0.1 cm) [69] at 5 mA for 18 h. Some sets of
resolved proteins were fixed, and stained with Coomassie
Brilliant Blue R-250 and/or silver [70].

Immunoblotting
Gradient-purified viral and core proteins were resolved by
SDS-PAGE as described above, and sets of resolved pro-
teins were transferred to nitrocellulose membranes with a
Semi-Dry Transblot manifold (Bio-Rad Laboratories)
according to the manufacturer's instructions. Transfer of
all proteins was confirmed by Ponceau S staining. Non-
specific binding was blocked in TBS-T (10 mM Tris [pH
7.5], 100 mM NaCl, 0.1% Tween 20) supplemented with
5% milk proteins, and the membranes probed with poly-
valent anti-µ2 antibody (a kind gift from Dr. E. G. Brown,
University of Ottawa). Membranes were washed with TBS-

Viral factory morphology as demonstrated by the distribu-tion of µNS in cells infected with T3D clones obtained from different laboratories or with T3D-derived ts clonesFigure 8
Viral factory morphology as demonstrated by the distribu-
tion of µNS in cells infected with T3D clones obtained from 
different laboratories or with T3D-derived ts clones. Labora-
tory sources are indicated in parentheses. CV-1 cells were 
infected at 5 PFU/cell with the clone indicated above each 
panel, fixed at 18 h p.i., and immunostained with µNS-specific 
rabbit IgG conjugated to Alexa 488. Size bars, 10 µm.

T3D(Coombs) T3D(Tyler)

T3D(Duncan) T3D(Shatkin)

tsC447 tsE320
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T, reacted with horseradish peroxidase-conjugated goat
anti-rabbit IgG (Jackson ImmunoResearch Laboratories),
and immune complexes detected with the enhanced
chemiluminescence system (Amersham Life Sciences)
according to the manufacturer's instructions.

Infections and IF microscopy
CV-1 cells were maintained in Dulbecco's modified Eagles
medium (Invitrogen) containing 10% fetal bovine serum
(HyClone Laboratories) and 10 µg/ml Gentamycin solu-

tion (Invitrogen). Rabbit polyclonal IgG against µNS [71]
was purified with protein A and conjugated to Alexa Fluor
488 or Alexa Fluor 594 using a kit obtained from Molecu-
lar Probes and titrated to optimize the signal-to-noise
ratio. Cells were seeded the day before infection at a den-
sity of 1.5 × 104/cm2 in 6-well plates (9.6 cm2/well) con-
taining round glass cover slips (18 mm). Cells on cover
slips were inoculated with 5 PFU/cell in phosphate-buff-
ered saline (PBS) (137 mM NaCl, 3 mM KCl, 8 mM
Na2HPO4 [pH 7.5]) containing 2 mM MgCl2. Virus was

Table 5: Properties of different T3D and T3D-derived clones

Positions of variation in T3D µ2

Virus isolate Laboratory source Virus factory 
morphology

150 208 224 372

T3D Niberta globularb Gln Serb Glu Ile
T3D Coombsa globular Gln Ser Glu Ile
T3D Schiffa globular Gln Ser Glu Ile
T3D Tylera globular Gln Ser Glu Ile
T3D Cashdollarc filamentousb Arg Prob Glu Met
T3D Duncanc filamentous Arg Pro Glu Met
T3D Shatkin filamentous Gln Pro Ala Ile
T3D ATCC filamentous Gln Pro Glu Ile
tsC447 Coombsc filamentous Gln Pro Glu Ile
tsE320 Coombsc filamentous Gln Pro Glu Ile
tsG453 Coombsc filamentous Gln Pro Glu Ile

a Origin traceable to B. N. Fields laboratory.
b Reported in Parker et al. [23].
c Origin traceable to W. K. Joklik laboratory; derived from T3D; sequences of tsC447 (GenBank accession no. AY428878), tsE320, and tsG453 are 
identical.

Table 6: Codon-usage frequencies in reovirus for eight codons that are rare in mammals

Frequencies of selected codons in coding sequences of:a

Mammalian genomes Reovirus genomes Individual reovirus genome segments (major protein encoded by each)

Codon AAb Expc Mus Bos Homo T1L T2J T3D L1 (λ3) L2 (λ2) L3 (λ1) M1 (µ2) M2 (µ1) M3 
(µNS)

S1 (σ1) S2 (σ2) S3 (σNS) S4 (σ3)

ACG Thr 0.25 0.11 0.13 0.11 0.23 0.30 0.24 0.17 0.28 0.22 0.27 0.17 0.16 0.30 0.38 0.26 0.20
CCG Pro 0.25 0.11 0.12 0.11 0.17 0.20 0.17 0.12 0.20 0.15 0.27 0.20 0.14 0.18 0.25 0.07 0.11
CGU Arg 0.17 0.09 0.08 0.08 0.20 0.22 0.24 0.22 0.19 0.14 0.25 0.19 0.31 0.12 0.16 0.21 0.29
CUA Leu 0.17 0.08 0.09 0.08 0.15 0.13 0.14 0.18 0.13 0.14 0.19 0.09 0.18 0.16 0.09 0.05 0.16
GCG Ala 0.25 0.10 0.11 0.11 0.24 0.26 0.26 0.29 0.22 0.30 0.31 0.15 0.16 0.25 0.30 0.10 0.29
GUA Val 0.25 0.12 0.11 0.12 0.18 0.17 0.15 0.20 0.23 0.12 0.15 0.23 0.14 0.23 0.17 0.14 0.23
UCG Ser 0.17 0.05 0.06 0.06 0.14 0.17 0.14 0.13 0.14 0.18 0.16 0.11 0.03 0.13 0.18 0.20 0.16
UUA Leu 0.17 0.06 0.07 0.07 0.20 0.18 0.20 0.32 0.20 0.16 0.23 0.14 0.07 0.18 0.32 0.13 0.16

mean - 0.21 0.09 0.10 0.09 0.19 0.20 0.19 0.22 0.20 0.19 0.21 0.18 0.16 0.21 0.22 0.16 0.18

a As fraction of all codons for the particular amino acid. Bold, value higher than that in any of the indicated mammals; underlined, value more than 
double that in any of the indicated mammals.
b Amino acid encoded by the codon
c Expected frequency if codons for each amino acid are used randomly (assuming equal A, C, G, and U contents and no di- or trinucleotide bias).
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adsorbed for 1 h at room temperature before fresh
medium was added. Cells were further incubated for 18–
24 h at 37°C before fixation for 10 min at room tempera-
ture in 2% paraformaldehyde in PBS or 3 min at -20°C in
ice-cold methanol. Fixed cells were washed with PBS three
times and permeabilized and blocked in PBS containing
1% bovine serum albumin and 0.1% Triton X-100.
Antibody was diluted in the blocking solution and incu-
bated with cells for 25–40 min at room temperature. After
three washes in PBS, cover slips were mounted on glass
slides with Prolong (Molecular Probes). Samples were
examined using a Nikon TE-300 inverted microscope
equipped with phase and fluorescence optics, and images
were collected digitally as described elsewhere [23]. All
images were processed and prepared for presentation
using Photoshop (Adobe Systems).
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