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Abstract
Background  Originating in Africa, African swine fever (ASF) was introduced to China in 2018. This acute and highly 
virulent infectious disease affects domestic pigs. The World Organization for Animal Health has listed it as a statutory 
reportable disease, and China has listed it as a category A infectious disease.

Methods  Primers and probes were designed for four ASFV genes (B646L, EP402R, MGF505-3R, and A137R). The 
primers/probes were highly conserved compared with the gene sequences of 21 ASFV strains.

Results  After optimization, the calibration curve showed good linearity (R2 > 0.99), the minimum concentration 
of positive plasmids that could be detected was 50 copies/µL, and the minimum viral load detection limit was 102 
HAD50/mL. Furthermore, quadruple quantitative polymerase chain reaction (qPCR) with nucleic acids from three 
porcine-derived DNA viruses and cDNAs from eight RNA viruses did not show amplification curves, indicating that 
the method was specific. In addition, 1 × 106, 1 × 105, and 1 × 104 copies/µL of mixed plasmids were used for the 
quadruple qPCR; the coefficient of variation for triplicate determination between groups was < 2%, indicating the 
method was reproducible.

Conclusions  The results obtained by testing clinical samples containing detectable EP402R, MGF505-3R, and A137R 
strains with different combinations of gene deletions were as expected. Therefore, the established quadruple qPCR 
method was validated for the molecular diagnosis of ASF using gene-deleted ASFV strains.
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Introduction
African swine fever (ASF) is a highly contagious viral 
disease caused by the African swine fever virus (ASFV), 
a double-stranded DNA virus belonging to the Asfar-
viridae family, which has 24 known genotypes [1, 2]. Its 
genome ranges between 170 and 193 kbp in length and 
encodes 68 structural proteins and > 100 non-structural 
proteins [3]. The virus comprises four layers of protein 
shells and an endogenous genome with a significantly 
more complex structure than many other viruses. In 
addition, its multilayered structure plays an important 
role in its replication and survival [4].

The p72 protein encoded by the B646L gene of ASFV 
is a major coat protein expressed at a late stage with a 
differential sequence in the C-terminal region [3]. Thus 
far, ASFV has been classified into 24 genotypes based 
on partial sequencing of the B646L gene encoding p72 
[1, 2]. The main strains prevalent in China are genotypes 
II (reported in 2018) [5] and I (reported in 2021) [6]. 
In addition, the EP402R gene encodes a late expressed 
CD2v protein, a glycoprotein similar to the surface adhe-
sion receptor CD2v on T lymphocytes [7].Viral CD2v 
protein is involved in the adsorption of erythrocytes, the 
binding of extracellular virus particles to erythrocytes [7], 
host immune regulation, virulence, and induction of pro-
tective immune responses [8]. Multigene family (MGF) 
proteins are widely distributed in ASFV and are generally 
classified into five families: MGF-100, MGF-110, MGF-
300, MGF-360, and MGF-505 [9]. MGF proteins are 
reported to be early expressed proteins [10] and are key 
players in multiple stages of transcription, translation, 
virulence, and immune escape in virally infected host 
cells [11]. The A137R protein is expressed late during 
the viral replication cycle, inhibits the interferon signal-
ing pathway, and plays an important role in evading the 
innate immune response [12]. In the artificial construc-
tion of gene-deleted strains, genes such as EP402R, MGF, 

and A137R are usually targeted; therefore, establishing 
corresponding detection methods is necessary for clinical 
applications.

The diagnosis of ASFV involves a virus isolation–
erythrocyte adsorption assay (HAD), polymerase chain 
reaction (PCR), real-time fluorescent quantitative PCR 
(qPCR), and isothermal amplification techniques. Virus 
isolation is a confirmatory method, and its corresponding 
assay (the erythrocyte adsorption assay) is time-consum-
ing and can be used only to validate strains with eryth-
rocyte adsorption characteristics. Moreover, it must be 
conducted in a biosafety level III laboratory to measure 
viral activity in samples and is dependent on the presence 
of actively replicating virus, which may be absent if the 
sample has not been correctly stored, resulting in inac-
tivation, thus limiting its clinical applications [13]. The 
isothermal amplification technique is suitable for rapid 
on-site detection. However, its sensitivity is slightly less 
than that of fluorescent PCR. Furthermore, although 
the PCR method has good specificity, its sensitivity is 
relatively low, the procedure is cumbersome, and aerosol 
contamination can easily occur, limiting its applications 
[14]. However, fluorescent PCR, which has high sensitiv-
ity, good specificity, and a convenient procedure, is grad-
ually becoming the main method for ASFV diagnosis. In 
this technique, the highly sensitive qPCR is the standard 
method [15].

Because using multiple methods and experiments to 
detect multiple genes is time-consuming and laborious, 
only a few genes have been detected using the currently 
available qPCR methods. In this study, we designed 
primers/probes for four ASFV genes (B646L, EP402R, 
MGF505-3R, and A137R) and established a quadruple 
fluorescent qPCR assay to diagnose ASF and differentiate 
gene-deleted strains from wild-type strains.

Materials and methods
Design of primers and probes
Primers/probes for amplifying B646L, EP402R, A137R, 
and MGF505-3R were designed using Primer3 (https://
primer3.org/) and were subjected to BLAST analysis. 
The primers/probes were compared with several ASFV 
strains published in GenBank using SnapGene software 
(www.snapgene.com/). The primers/probes (Table  1) 
were all synthesized by Sangon Biotech (Shanghai, 
China).The sequences and sizes of the target fragments 
amplified by the designed primer probes in the Georgia 
2007/1 strain are shown in Supplementary file 1, Figs. 1, 
2, 3 and 4.

Plasmid construction and nucleic acid extraction
With reference to the ASFV HuB20 strain (Gen-
Bank sequence number: MW521382), full-length 
B646L, EP402R, A137R, and MGF505-3R genes were 

Table 1  Primer/probe sequences
Target gene Primer/probe Sequences (5'–3')
B646L B646L-F GAACGTGAACCTTGCTA

B646L-R GGAAATTCATTCACCAAATCC

B646L-P 6-FAM-TAAAGCTTGCATCGCA-MGB
EP402R EP402R-F GACACCACTTCCATACATGAAC

EP402R-R GGACGCATGTAGTAAATAGGT

EP402R-P Cy5-CAGTCGTTATCAGTATAA-MGB
A137R A137R-F CTTGAAATCCCTGAGGAACG

A137R-R CGATGTCCCGAAATGAGTCT

A137R-P Texas 
Red-CACCGCCTGGCATGA-MGB

MGF505-3R MGF505-3R-F GAGCTGTTGTTGTCATGGGA

MGF505-3R-R GGATTTTGAATCAGCGGCAA

MGF505-3R-P VIC-CCCCGCTACGCCGTCGTAG-
GAGCCC-MGB

https://primer3.org/
https://primer3.org/
http://www.snapgene.com/


Page 3 of 11Zuo et al. Virology Journal          (2023) 20:150 

Fig. 1  (A–D) The primers/probes of B646L(A), EP402R(B), A137R(C), and MGF505-3R(D) with the gene sequence comparison of African swine fever virus 
(ASFV) endemic strains in China and other countries. The red boxes correspond to the sequence for upstream primers, the blue boxes to the sequence 
for probes, and the black boxes to the sequence for downstream primers
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synthesized, ligated into the pUC57 vector, and used 
as a positive control. The recombinant plasmids were 
named pUC57-B646L, pUC57-EP402R, pUC57-A137R, 
and pUC57-MGF505-3R; their concentrations were 
converted to copy numbers after measuring their OD260 
using a Nanodrop-1000 microspectrophotometer 
(Thermo Fisher Scientific; Waltham, MA, USA). The four 
recombinant plasmids were mixed so that the concentra-
tion of each recombinant plasmid was 2.5 × 108 copies/
µL. Next, the mixed plasmids were diluted to 1 × 108 cop-
ies/µL, and 10-fold dilutions were performed to obtain 
1 × 100 copies/µL; 1 × 102 copies/µL of the mixed plasmids 
was twice diluted in half to obtain 25 copies/µL. Lastly, 
clinical and diluted samples from the 108–100 HAD50 
ASFV blood series were subjected to nucleic acid extrac-
tion using the QIAamp DNA Mini Kit (Cat No. 51,306; 
Qiagen, Hilden, Germany).

Quadruple fluorescence quantitative PCR method 
optimization
Using a LightCycler 480II fluorescent qPCR instrument 
(Roche Holding AG, Basel, Switzerland), 2× HyperProbe 
Mixture (CWBIO, Cat No. CW3003M, Beijing, China) 
was selected as the premix required for the reaction, and 
the primer/probe concentration, annealing temperature, 
and cycle number were optimized. Next, the total sys-
tem (Table 2) was optimized to 25 µL. Predenaturation at 
95 °C for 30 s, denaturation at 95 °C for 10 s, and anneal-
ing/extension at 58  °C for 20  s were the qPCR reaction 
conditions. Because of interference between the fluores-
cence channels, the color compensation procedure was 
95 °C for 30 s, 65 °C for 1 min, and 85 °C continuous.

Establishment of a standard curve
A 10-fold serial dilution of 1 × 106 copies/µL of the mixed 
plasmid to 102 copies/µL was used as a template for qua-
druple qPCR amplification. Based on the cycle threshold 
(Ct) and copy number of the template, a standard curve 
was generated, and its slope and coefficient of determina-
tion (R2) were determined.

Sensitivity.
Mixed plasmids of 1 × 103, 1 × 102, 50, 25, and 1 copies/

µL were used as reaction templates to test the sensitiv-
ity of the quadruple qPCR. In brief, blood samples with 
a viral load of 108 HAD50 ASFV were diluted 10-fold to 
100 HAD50, and nucleic acids were extracted to test the 
sensitivity of quadruple qPCR for detecting nucleic acid 
templates representing different viral loads.

Specificity and reproducibility
The specificity of the quadruple qPCR was determined 
using nucleic acids of foot and mouth disease virus 
(FMDV), bovine viral diarrhea virus (BVDV), porcine 
epidemic diarrhea virus (PEDV), pseudorabies virus 
(PRV), porcine parvovirus (PPV), porcine reproductive 
and respiratory syndrome virus (PRRSV), swine influ-
enza virus (SIV), porcine circovirus II (PCVII), Japa-
nese encephalitis virus (JEV), classical swine fever virus 
(CSFV), transmissible gastroenteritis virus (TGEV), and 
ASFV kept in the WOAH reference laboratory of the 
China Veterinary Drug Inspection Institute. In addition, 
1 × 106 to 1 × 104 copies/µL of mixed plasmids were used 
as templates for triplicate determinations, performed 
within and between groups of mixed plasmids of each 
gradient, to test the reproducibility of the quadruple 
qPCR. The standard deviation and coefficient of variation 
were calculated.

Clinical sample testing
The clinical samples collected included blood, liver, 
spleen, Hubei/2019 genotype II ASFV lung, Geno-
type 1 ASFV cell samples, and Artificial construction 
ASFV ΔA137RΔEP402R cell sample. Nucleic acids were 
extracted from these six samples (200 µL each) and were 
eluted with 50 µL of eluent, of which 3 µL each was 
used for the quadruple qPCR. The total system, with 
each primer/probe, ddH2O, and 2× HyperProbe Mix-
ture is presented in Table 2. The reaction conditions are 
described in Sect. 2.3.

Declarations
All treatments for viruses were performed in a Bio-
safety Level III Laboratory of the China Veterinary Drug 
Inspection Institute.

Table 2  Quadruple quantitative polymerase chain reaction 
mixture components
Reagents Volume (µL)
2× HyperProbe Mixture 12.5

B646L-F (20 µM) 0.3

B646L-R (20 µM) 0.3

B646L-P (10 µM) 0.2

EP402R-F (20 µM) 0.2

EP402R-R (20 µM) 0.2

EP402R-P (10 µM) 0.4

A137R-F (10 µM) 0.4

A137R-R (10 µM) 0.4

A137R-P (10 µM) 0.6

MGF505-3R-F (10 µM) 0.2

MGF505-3R-R (10 µM) 0.2

MGF505-3R-P (10 µM) 0.1

DNA 3

ddH2O 6

Total 25
ddH2O, double-distilled water
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Results
Primer probe design
The gene sequence comparison of the prevalent ASFV 
strains in China and other countries revealed that the 
designed primers/probes matched conserved regions 
in B646L, EP402R, and A137R of ASFV genotypes I and 
II. In addition, the MGF505-3R primers/probes were 
conserved in genotype I Benin 97/1 (AM712239), geno-
type I OURT 88/3 (NC_044957), HeN/ZZ-P1/2021 
(MZ945536), and SD/DY-I/2021 (MZ945537), and in 
genotype II strain L60 (KM262844) (Fig.  1 and Supple-
mentary file 2). Therefore, we inferred that the B646L 
primer/probe could be used to confirm ASFV, after 
which the primers/probes of EP402R, A137R, and 
MGF505-3R were used to distinguish between the wild-
type and gene-deleted ASFV strains.

Standard curves
The standard curves obtained using 1 × 106 to 1 × 102 
copies/µL of mixed plasmids as templates demonstrated 
good linearity. Moreover, the slopes of the standard curve 
equations for B646L, EP402R, A137R, and MGF505-3R 
were − 3.737, -3.707, -3.832, and − 4.316, respectively; the 
coefficients of determination (R2) were 0.9962, 0.9970, 
0.9940, and 0.9922, respectively (Fig.  2 and Supplemen-
tary file 3 Figs. 1, 2, 3 and 4). This data indicates that the 

amplification efficiency of the method was good, and the 
fit was excellent.

Minimum detection limit and result determination
Among the mixed plasmids of 1 × 103, 1 × 102, 50 × 101, 
25 × 101, and 1 × 101 copies/µL, the minimum limit of 
detection was 50 × 101 copies/µL for B646L, EP402R, 
A137R, and MGF505-3R, while their Ct values were 
39.22, 39.19, 39.76, and 37.30, respectively (Table  3). 
Furthermore, the minimum limit of detection of 102 
HAD50/mL was determined using a 10-fold serial dilu-
tion of 108 HAD50 ASFV blood samples. The Ct values of 
B646L, EP402R, A137R, and MGF505-3R in 102 HAD50 
nucleic acids were 39.62, 37.93, 38.13, and 35.92, respec-
tively (Table 4).

The criteria for determining negative and positive 
results were based on the results for known low viral load, 
low copy-number positive plasmid samples, and sensi-
tivity. For B646L, a Ct ≤ 37 was considered positive, and 
Ct > 40 was considered negative. For EP402R, a Ct ≤ 38 
was considered positive, and Ct > 40 was considered 
negative. For A137R, a Ct ≤ 37 was considered positive, 
and Ct > 40 was considered negative. For MGF505-3R, a 
Ct ≤ 36 was considered positive, and Ct > 38 was consid-
ered negative. For each gene, no Ct value was considered 

Fig. 2  Plot of standard curve equations for B646L, EP402R, A137R, and MGF505-3R genes in the quadruple quantitative polymerase chain reaction. B646L: 
y = -3.737x + 43.838, R2 = 0.9962. EP402R: y = -3.707 + 43.388, R2 = 0.997. A137R: y = -3.832x + 43.918, R2 = 0.994. MGF505-3R: y = -4.316x + 43.696, R2 = 0.9922
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negative, and values between the positive and negative 
cut-offs were considered suspicious.

Specificity and reproducibility of the experimental results
DNA (PRV, PPV, and PCVII) and RNA viruses (FMDV, 
CSFV, PEDV, TGEV, SIV, JEV, PRRSV, and BVDV) did 
not show amplification curves in the quadruple qPCR; 
only the positive control for ASFV showed typical ampli-
fication (Fig.  3), indicating that the established method 
had good specificity.

The 1 × 106 to 1 × 104 copies/µL of mixed plasmids 
showed good reproducibility in the three replicates 
between groups within the quadruple qPCR, with coef-
ficients of variation of less than 2% in all cases (Table 5).

Quadruple qPCR method validation
The clinical samples tested using the established qua-
druple qPCR showed the expected amplification. 
ASFV nucleic acids from the blood, liver, spleen, and 
lungs showed amplification; however, the MGF505-
3R of genotype I ASFV and the A137R and EP402R of 
ASFVΔA137RΔEP402R did not show amplification 
(Fig. 4).

Discussion
Since its discovery, the continuous spread of ASF has sig-
nificantly affected the global supply of pork products and 
has devastated food security and animal health and wel-
fare [16]. China’s pig production capacity has decreased 
significantly since the disease was introduced in 2018. 
Because of the insidiousness and complexity of ASFV 
transmission, the epidemic remains unresolved [17]. 
Although ASF has long been identified, it lacks a safe 
and effective vaccine. Therefore, an effective diagnos-
tic method is critical for controlling the epidemic. Con-
sequently, we designed primers/probes for four genes, 
B646L, EP402R, A137R, and MGF505-3R. Notably, the 
p72 protein, the main capsid protein of ASFV encoded 
by the B646L gene, is often used as the first choice for 
diagnosing epidemic ASFV [18–21]. In addition, CD2v, 
encoded by the EP402R gene, is vital for ASFV diagno-
sis [22, 23]. Furthermore, EP402R, MGF, and A137R are 
known virulence genes whose deletion can substantially 
reduce the virulence of the virus in pigs [23–30]. There-
fore, these genes are expected to serve as alternative 
deletion genes for gene deletion vaccines, and establish-
ing corresponding identification methods is necessary. 
Moreover, mutant strains such as CD2v-deletion strains 
with low pathogenicity have previously been identified 
[31]. We considered that targeting these ASFV genes 
would be necessary to confirm the diagnosis and patho-
genic strains involved in ASFV infection. Thus, we devel-
oped a suitable quadruple PCR method that showed high 
sensitivity and specificity.Ta
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The B646L, EP402R, and A137R primers/probes 
used in this study were conserved in genotypes I and II 
ASFV. In addition, the MGF505-3R primers/probes were 
conserved in genotype I Benin 97/1 (AM712239), L60 
(KM262844), and genotype II ASFV. However, deletions 
were found in OURT 88/3 (NC_044957) and in the fre-
quently isolated Chinese genotypes HeN/ZZ-P1/2021 
(MZ945536) and SD/DY-I/2021 (MZ945537). With this 
method, we inferred that a sample with positive results 
for B646L, EP402R, and A137R and negative results for 
MGF505-3R could contain genotype I ASFV. Moreover, 
we verified this result with a known genotype I ASFV 
cytotoxic sample (see Fig. 4E), and the results were con-
sistent with our hypothesis.

To verify the specificity of the method, we performed 
amplification using nucleic acids of three porcine-derived 
DNA viruses (PRV, PPV, and PCVII) and eight porcine-
derived RNA viruses (FMDV, CSFV, PEDV, TGEV, SIV, 

JEV, PRRSV, and BVDV). None of these 11 nucleic acids 
showed amplification curves; only the positive ASFV 
control showed typical amplification (see Fig. 3), indicat-
ing that the method was specific for diagnosing ASFV 
without interference from other pathogens. Regard-
ing reproducibility, the coefficient of variation was cal-
culated for triplicate determination within each group, 
and the results obtained for all four genes were < 2% less 
than that of other ASFV qPCR diagnostic methods [32]. 
This result indicated that our method was reproducible, 
with minimal deviation in the results obtained from each 
experiment, and that batch differences do not affect the 
determination of the results.

Regarding sensitivity, the minimum limit of detection 
for all four genes was 50 copies/µL and 102 HAD50/mL. 
Moreover, our method was more sensitive for the detec-
tion of B646L and EP402R than other qPCR methods 
[33]. Because of the interference of the fluorescent groups 
in each probe of the quadruple qPCR, the hydrolysis effi-
ciency of the probes was affected, changing the ampli-
fication efficiency. However, these effects were within 
a reasonable range, and the determination of negative 
results was unaffected. In addition, the method allowed 
the simultaneous detection of four genes, shortening the 
time of multigene detection.

A limitation of our study is that only four genes 
could be detected as only a maximum of four fluores-
cence channels are available in the current fluorescence 
PCR instruments. In the future these instruments may 
improve to include more fluorescence channels, which 
would allow for detection of additional genes.

In conclusion, we established a quadruple qPCR 
method for B646L, EP402R, A137R, and MGF505-3R to 
distinguish ASFV wild-type strains from gene-deleted 
strains based on current research. This method is the 
only qPCR method that can simultaneously detect four 
ASFV genes with conserved primer/probe sequences 

Table 5  Intra-group reproducibility of the quadruple quantitative polymerase chain reaction groups
Target
gene

Concentration
(copies/µL)

Intra-group replication Repeated between groups

Mean SD CV% Mean SD CV%

B646L 1 × 106 21.70 0.05 0.2 21.93 0.21 1

1 × 105 24.92 0.03 0.1 25.15 0.2 0.8

1 × 104 29.23 0.06 0.2 29.76 0.47 1.6

EP402R 1 × 106 21.23 0.03 0.1 21.43 0.21 1

1 × 105 24.62 0.06 0.2 24.77 0.19 0.8

1 × 104 28.97 0.22 0.8 29.40 0.38 1.3

A137R 1 × 106 20.97 0.03 0.1 21.24 0.24 1.1

1 × 105 24.56 0.13 0.5 24.74 0.20 0.8

1 × 104 29.14 0.23 0.8 29.62 0.42 1.4

MGF505-3R 1 × 106 17.97 0.02 0.1 18.31 0.32 1.7

1 × 105 21.86 0.11 0.5 22.26 0.37 1.7

1 × 104 26.94 0.20 0.7 27.50 0.52 1.9
SD, standard deviation; CV, coefficient of variation.

Fig. 3  Curves 1–4 represent B646L, MGF505-3R, A137R, and ER402R gene 
amplification profiles of African swine fever virus, respectively, and 5–16 
represent pseudorabies virus, porcine parvovirus, porcine circovirus II, foot 
and mouth disease virus, classical swine fever virus, porcine epidemic diar-
rhea virus, transmissible gastroenteritis virus, swine influenza virus, Japa-
nese encephalitis virus, porcine reproductive and respiratory syndrome 
virus, bovine viral diarrhea virus, and negative control, respectively
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Fig. 4  Amplification curves for (A) the genotype II African swine fever virus (ASFV) blood sample, (B) the genotype II ASFV liver sample, (C) the genotype 
II ASFV spleen sample, (D) the genotype II ASFV lung sample, (E) the genotype I cell sample, and (F) the ASFV ΔA137RΔEP402R cell sample. Numbers 1–5 
indicate ASFV B646L, MGF505-3R, A137R, ER402R, and negative control amplification curves, respectively
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with high sensitivity, specificity, and reproducibility, pro-
viding a comprehensive diagnosis of ASFV.
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