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Tomato leaf curl Kerala virus (ToLCKeV) AC3 protein
forms a higher order oligomer and enhances
ATPase activity of replication initiator protein

(Rep/AC1)
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Abstract

enhanced the AC1-mediated ATPase activity in vitro.

Background: Geminiviruses are emerging plant viruses that infect a wide variety of vegetable crops, ornamental
plants and cereal crops. They undergo recombination during co-infections by different species of geminiviruses and
give rise to more virulent species. Antiviral strategies targeting a broad range of viruses necessitate a detailed
understanding of the basic biology of the viruses. ToLCKeV, a virus prevalent in the tomato crop of Kerala state of India
and a member of genus Begomovirus has been used as a model system in this study.

Results: AC3 is a geminiviral protein conserved across all the begomoviral species and is postulated to enhance viral
DNA replication. In this work we have successfully expressed and purified the AC3 fusion proteins from E. coli. We
demonstrated the higher order oligomerization of AC3 using sucrose gradient ultra-centrifugation and gel-filtration
experiments. In addition we also established that ToLCKeV AC3 protein interacted with cognate AC1 protein and

Conclusions: Highly hydrophobic viral protein AC3 can be purified as a fusion protein with either MBP or GST. The
purification method of AC3 protein improves scope for the biochemical characterization of the viral protein. The
enhancement of ACT-mediated ATPase activity might lead to increased viral DNA replication.

Background

Tomato leaf curl disease (ToLCD) is a cause of concern
for the tomato plant. This disease is mostly caused by leaf
curl viruses of Geminiviridae family that include more
than 50 species of Tomato leaf curl viruses of genus Bego-
movirus. Threat to the tomato crop is further aggravated
by the high level of recombination observed in the gemi-
niviruses during mixed infection resulting in the emer-
gence of new and virulent viral species. Various
approaches have been adopted to control the geminivi-
ruses through traditional breeding and transgenic
approaches. Noted among them are transgenic
approaches based on viral intergenic sequences [1],
mutant viral proteins [2-7], antisense RNAs [8,9] and
peptide aptamers [10,11]. But most of them have been
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either less efficient at the field level or are limited to nar-
row range of virus species. Thus, there is a need for a bet-
ter and consistent approach to generate resistant plants
against a broad range of virus species.

Understanding the basic biology, such as replication of
the geminiviruses expands the scope of the development
of antiviral strategies to target the viral infection. Gemini-
viruses possess closed circular ssDNA (~ 2.7 kb) and the
virion particles are transferred from one plant to another
by the plant vectors like leaf hopper and white fly. Gemi-
niviruses replicate via rolling circle replication. Various
studies have shown that the viral proteins, AC1/C1 and
AC3/C3 are required for the viral replication [12-18].
While AC1 was well characterized for its role in initia-
tion, elongation and termination of replication [19-21],
little information is available regarding the characteristics
of AC3/C3 protein of geminiviruses. AC3/C3 was shown
to enhance DNA replication in protoplast assays and leaf
disc assays [14,22]. However, the mechanism of replica-
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tion enhancement by AC3, its structure and biochemical
properties are under explored due to the difficulty associ-
ated with the purification of soluble AC3 protein [23]. To
better understand the biochemical characteristics of the
AC3 protein, we have developed a robust prokaryotic
expression system for Tomato leaf curl Kerala virus-
[India:Kerala 11:2005] (ToLCKeV; DQ852623) AC3 pro-
tein in E. coli and studied its oligomeric properties in
solution. We have also examined the interaction of ToL-
CKeV AC3 with the cognate AC1 protein and the impact
of this interaction on the ATPase activity of AC1.

Results and Discussion

Recombinant protein expression and purification of
ToLCKeV AC3 and AC1 proteins

ToLCKeV AC3 is a 134 aa protein and is highly hydro-
phobic (84/134 aa) like its homologs such as Tomato yel-
low leaf curl virus (TYLCV) C3 and Tomato golden
mosaic virus (TGMV) AC3 proteins [22]. High hydro-
phobicity of the AC3 protein makes it unstable in the
solution and the protein forms inclusion bodies when
expressed with His tag [[23], unpublished data from our
lab]. Instability might also be due to the poor recruitment
of molecular chaperones at the site of protein synthesis in
prokaryotic cells. However, AC3 could be expressed from
insect cells as a GST fusion protein [24]. Since the use of
insect cell line is expensive, we expressed AC3 protein as
a fusion with glutathione S-transferase (GST) and malt-
ose binding protein (MBP) in E. coli (Fig 1a,b). MBP is
known to facilitate the proper folding of the fusion pro-
tein by acting as an intra-molecular chaperone [25] and
the reason for choosing GST is the ease in performing in
vitro protein-protein interaction studies. GST-AC3 and
MBP-AC3 protein possessed a molecular mass of 40 kDa
and 55 kDa which differed marginally from the predicted
value (41.8 kDa and 58 kDa respectively) of the fusion
ORE. A similar kind of deviation in the mobility on SDS-
PAGE was observed in case of His-AC3 protein from
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Figure 1 Expression and purification of recombinant AC3 and
AC1 proteins. (a) Purified GST-AC3 fusion protein. (b) Purified MBP-
AC3 fusion protein. (c) Purified MBP-AC1 fusion protein. All the proteins
were run on separate SDS-PAGE gels and stained with Coomassie blue.
'M' denotes the marker lane and protein from different batches are de-
noted by numbers.
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TGMYV [23] and thus, it seems to be inherent to all the
AC3 fusion proteins. Our attempts to release the AC3
protein by cleaving it from the MBP fusion resulted in
precipitation of AC3 protein (data not shown). So, we
proceeded with the MBP-AC3 in our studies.

Similarly, ToOLCKeV AC1 was also expressed with His
tag and GST fusion. However, ToLCKeV AC1 could not
be expressed as a soluble protein in either case (data not
shown). A similar case was observed in case of MYMIV-
sp [MP] Rep protein [26]. So, we cloned the Rep protein
as an MBP fusion and purified it as the soluble protein
(Fig 1¢).

ToLCKeV AC3 protein forms a higher order oligomer
Replication is a complex process that involves interaction
with various proteins. Many a times self-oligomerization
of a protein generates multiple sites to interact or
increase the area of interaction, thereby strengthening
the interaction. Since, AC3 was known to play role in rep-
lication and new world viral protein TGMV AC3 is
known to oligomerize [22,24], we examined if the old
world viral protein ToLCKeV AC3 could also be oligo-
meric in nature. We performed an in vitro GST pull-
down reaction with the GST-AC3 and MBP-AC3 pro-
teins in the solution (Fig 2a). The fact that MBP and GST
does not play any role in these interaction studies was
confirmed through the control reactions performed along
with the test reaction. In these in vitro reactions, MBP
alone was not observed in the bound fractions containing
GST-AC3 (Fig 2a, lanes 2 and 5). However, MBP-AC3 was
observed in the bound fraction containing the GST-AC3
(Fig 2a, lanes 3 and 6), which is possible only through the
inter-molecular interaction between AC3 molecules.
Though this experiment corroborated with the observa-
tions that the ToLCKeV AC3 oligomerized like the new
world TGMV AC3 [24], the oligomeric status could not
be inferred from this experiment alone.

Preliminary experiments with TGMV AC3 indicated
that it forms a higher order oligomer of more than 100
kDa which has not been deciphered further [22]. So, to
find the exact oligomeric status of AC3 protein, we opted
for the sucrose gradient ultracentrifugation method and
gel-filtration with the purified ToLCKeV AC3 protein.
The reaction mixture of MBP-AC3 was loaded onto the
step gradient of sucrose which was centrifuged as
described in the 'Methods' section along with control
protein MBP and molecular weight markers in separate
tubes. In this experiment, a comparison with the control
molecular weight markers together with the gel-filtration
data indicated that MBP-AC3 most probably existed as
an oligomer with a molecular mass higher than 669 kDa
which corresponds to a higher order oligomer of 12-14
mer (Fig 2b,c). Since, the control protein MBP does not
show the higher order oligomeric formation [Fig 2b (ii)],
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Figure 2 ToLCKeV AC3 forms a higher order oligomer. (a) Western blotting of GST pull-down assay using poly-clonal MBP-AC3 antibodies. Frac-
tions corresponding to 'input' represent the protein composition of the total reaction mix for protein-protein interactions. Fractions corresponding
to 'bound' represent the proteins that are interacting with GST-AC3 bound to glutathione sepharose. Presence of MBP-AC3 in the bound fraction in-
dicates the formation of oligomer. (b) [i] Protein distribution pattern for the MBP-AC3 after sucrose gradient ultracentrifugation was visualised by Coo-
massie blue staining. MBP-AC3 forms a faint peak at 11 thfraction and a prominent peak at 32 ndfraction as indicated by 'V'. Arrows indicate the peak
formation of molecular weight standard proteins: Aldolase (158 kDa) at 17 thfraction, Ferritin (449 kDa) at 26 thfraction and Thyroglobulin (669 kDa) at

30 thfraction. [ii] MBP (43 kDa) does not form an oligomer and peaks in the 5 th fraction. (c) Gel filtration with Superdex-200 5/150 column shows the

elution of various proteins. MBP-AC3 elutes between the Dextran (2000 kDa) and Thyroglobulin (669 kDa).
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the higher molecular weight observed in case of fusion
protein MBP-AC3 can be attributed to the oligomeriza-
tion of the recombinant AC3 protein alone.

AC3 interacts with AC1 in vitro and enhances the ATPase
activity of AC1

Previous studies in tobacco protoplasts with TGMV AC3
indicated that it either facilitates or stabilizes the AC1-
DNA interaction [27]. Other studies have also indicated
that AC1 interacts with AC3 co-expressed in yeast or
insect cells [22,24]. However, the impact of this interac-
tion was not investigated in its biochemical terms. So, we
asked if ToLCKeV AC3 interacts with AC1 in vitro, and
what could be its effect on the biochemical activity of
AC1, particularly the ATPase activity of ACI.

We have performed an in vitro GST pull-down assay
with MBP-AC1 and GST-AC3 along with the control
reactions (Fig 3). We observed that MBP-AC1 is present
only in the bound fraction in the presence of GST-AC3
(Fig 3, lanes 3 and 6) whereas MBP-ACI fusion protein
alone (Fig 3, lanes 1 and 4) or MBP alone is unable to bind
to the glutathione resin (Fig 3, lanes 2 and 5). These con-
trol reactions indicated that the interaction observed
with GST-AC3 and MBP-AC1 could be possible only if
AC1 and AC3 interacted with each other. This interaction
study done with the recombinant proteins purified from
E. coli corroborated with the earlier experiments done
with the TGMV AC3 and TGMV AC1 proteins co-
expressed in insect cell lines [24] and the yeast two hybrid
experiments carried out with TYLCV C3 and TYLCV C1
[22].

AC1 protein is multi-functional protein with DNA
binding activity [27-32], site-specific DNA nicking activ-
ity [33,34], ATPase activity [19,20,35], helicase activity
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Figure 3 GST pull-down assay for in vitro interaction of ToLCKeV
GST-AC3 and MBP-AC1. Coomassie blue stained SDS-PAGE showing
in vitro interaction between GST-AC3 and MBP-ACT. Fractions corre-
sponding to 'input’ (lanes 1-3) represent the total protein composition
in each reaction mix. GST-AC3 bound proteins were thoroughly
washed to remove the non-specifically interacting proteins. 'Bound'
fractions (lanes 4-6) represent the proteins that were interacting with
GST-AC3. Presence of AC1 in the bound fraction (lane 6) indicates its in-
teraction with AC3.
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[36,37] and also modulates the gene expression from the
complementary strand of the viral DNA [38-42]. The in
vitro interaction with the purified AC3 and AC1 fusion
proteins prompted us to question the after effects of this
interaction on the biochemical activity of AC1. ATPase
activity is an important property of AC1 and affects the
site-specific DNA nicking and ligation activity [43] and is
also implicated in the helicase activity [36,37]. Hence, we
investigated if AC3 interaction with AC1 had any effect
on ACl-mediated ATPase activity.

A series of ATPase reactions were performed to assess
the influence of AC3 on AC1-ATPase activity (Fig 4a).
Comparison of control reactions with MBP protein alone
(Fig 4a, lane 9), MBP with AC1 (Fig 4a, lane 10), MBP-
AC3 alone (Fig 44, lanes 11, 12, 13) did not show any sig-
nificant ATPase activity in the reaction. However, in the
presence of MBP-AC3, AC1 protein revealed a significant
increase in the ATPase activity which can be attributed to
AC3 interaction with AC1 (Fig 4a, lanes 3-6). ATPase
activity enhanced to about 50%-80% initially and reduced
upon further increase in the concentration of AC3 pro-
tein in the reaction mix resulting in a bell shaped curve
(Fig 4b). Modulation of ATPase activity is significant in
the context of the multi-functional role of AC1. ATPase
activity is necessary for the helicase activity of Rep which
was also proposed to be a likely replicative helicase
[36,37]. In this context the modulation of ATPase activity
by AC3 assumes significance as it might influence the
AC1's helicase activity and gives a direction on the way
AC3 enhances the replication. Further studies of the role
of AC3 in modulating the role of helicase activity are
under investigation.

Methods
Cloning, expression and purification of recombinant MBP
and GST fusion proteins
AC3 and AC1 ORFs were amplified from Tomato leaf curl
Kerala virus-[India:Kerala 11:2005] (NCBI Accession No.
DQ852623) using degenerate oligos designed from the
CLUSTALW multiple alignment of AC3 and AC1 ORFs
from various geminiviral genomes isolated in our lab
(DQ629101, DQ629102, DQ629103, DQ887537,
AJ314739, AF126406). Following oligos were used in the
current experiments:

All_AC3_Fwd: 5- CATGAGCTCGGATCCATGGAT-
TCACGCACAGGG -3'

All_AC3_Rev: 5'- CCATCTAGACTCGAGTGGCRTG-
TACTCAYGCCTCTAAYCC -3'

ToLCV_AC1_Fwd: 5'- CATGGATCCATGGCHVCYC-
CMAAWCG -3'

ToLCV_AC1_Rev: 5- TGACTCGAGTCAACYCGW-
CGACGHCTGG -3'

Amplified ORFs were purified from the PCR mix and
cloned into pGEMT-Easy cloning vector. The cloned vec-
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Figure 4 AC3 modulates the ATPase activity of Rep. (a) Autoradiograph showing the ATPase activity of Rep in the absence and presence of AC3.
AC3 increases the ATPase activity of Rep at low concentration (0.02-0.2 pM) by 50-80%. Composition of the proteins in the reaction mix is shown at
the top of each lane in the autoradigraph. ATPase reaction was carried with a uniform concentration of Rep protein and varying concentrations of
MBP-AC3 as denoted in the figure. MBP was used as a negative control. (b) Graphical representation of ATPase activity of Rep in the presence of MBP-
AC3. ATPase activity in the reaction mix containing the Rep protein alone was arbitrarily assigned a value of 100% and activity in other lanes was cal-
culated accordingly. Graph was plotted for the lanes 1-8 that correspond to the lanes of autoradiograph.
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tors were then digested with BamH I and Sal I restriction
enzymes. The digested ORFs were purified and sub-
cloned into BamH I and Sal I digested pMal-c2X and
PGEX-4T-1. Expression vectors containing AC3 and AC1
ORFs were then transformed into E. coli. The bacterial
cells containing the expression vectors were induced
over-night at 18°C with 0.01 mM IPTG. The induced cells
were harvested and sonicated as per standard methods.
The MBP fusion proteins and GST fusion protein were
purified by affinity chromatography with amylose resin
and glutathione sepharose respectively as per the manu-
facturer's protocol (New England Biolabs and GE Health-
care respectively). Purified proteins were dialysed in
buffer containing 50 mM Tris, 100 mM NaCl and 40%
glycerol and the proteins were stored in aliquots at -20°C.

GST pull-down assay

Purified GST fusion protein was incubated with varied
amounts of MBP fusion protein in binding buffer [25 mM
Tris (pH 8.0), 75 mM NacCl, 2.5 mM EDTA, 5 mM MgCl,,
2.5 mM DTT, 1% NP-40] at 37°C for 30 min. Glutathione
sepharose 4B resin was equilibrated with binding buffer
and 10 pl of resin was added to the incubated protein
mixture and kept on nutator for 30 min. Unbound pro-
tein fraction was separated from the resin by centrifuga-
tion at 3,000xg for 3 min. Resin bound to the protein was
washed with increasing concentrations of NaCl (100 mM
to 400 mM) in binding buffer. Equal amount of 2x sample
loading buffer [100 mM Tris-HCI (pH 6.8), 200 mM DTT,
4% SDS, 0.2% Bromophenol blue] was then added to the
resin, boiled for 5 min, centrifuged briefly and the super-
natant was analyzed by SDS-PAGE. The protein bands
were visualized by western blotting or Coomassie blue
staining as per standard procedures.

Sucrose Gradient

We followed the protocol that was used for the analysis of
oligomerization of Rep [36]. About 250 mg of each of the
purified proteins was layered directly on a 10.5 ml of 10-
40% (w/v) sucrose step gradient in a buffer containing 25
mM Tris (pH 8.0), 250 mM NaCl, 2 mM Sodium bisul-
phite and 0.05% Triton X-100. Gradients were centri-
fuged in a Beckman SW41Ti rotor at 35,000 rpm for 20 h
at 4°C. Fractions (250 pl) were collected and subjected to
10% SDS-PAGE. The protein bands were visualized by
silver staining. Protein molecular mass markers viz.,
Aldolase (158 kDa), Ferritin (449 kDa), and Thyroglobu-
lin (669 kDa) were run in parallel gradients. Each fraction
of 250 pl represented a sedimentation distance of 2.12
mM as an 11 ml solution filled up an axial length of 89
mM in the centrifuge tube. The sedimentation distance (y
in mm) corresponding to a fraction 'f' was represented by
the equation y = 67+2.12x'f, where 67 is the distance
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from the axis of rotation to the top of the centrifuge tube.
Regression analysis using the Microsoft Excel application
program yielded the equation: y = 35.490+29.754xLog
(x); R2=0.997, where y represents the sedimentation dis-
tance (in mm) and x represents the molecular mass (in
kDa). The sedimentation distance for MBP-AC3 was fit-
ted into the standard curve and their native molecular
mass was estimated.

Gel Filtration

Oligomerization status of AC3 was analyzed with gel fil-
tration using Superdex 200 5/150 column in Acta Prime
(GE Healthcare) having a bed volume of 3 ml and a void
volume of 1.374 ml. Protein sample (100 pl) was injected
and the flow rate of the column was maintained at 200 pl
per minute all through the process. Dextran (2000 kDa),
Thyroglobulin (669 kDa), Ferritin (449 kDa), Aldolase
(158 kDa) and Aprotinin (9 kDa) were used as molecular
weight standards under the same conditions.

ATPase Assay

The ATPase reaction was carried out by incubating the
radiolabeled ATP [10 puCi of (y- 32P) ATP (6000 Ci/mmol)
was diluted 50 fold with 5 mM ATP] with Rep and/or
MBP-AC3 in buffered solution [20 mM Tris-Cl (pH 8.0),
1 mM MgCl,, 100 mM KCl, 8 mM DTT, and 80 ng/pl of
BSA] for 30 min at 37°C. After the reaction, 1 pl of the
reaction mix was spotted on PEI-TLC plate. Plate was air-
dried and chromatographed with a running solvent (0.5
M LiCl and 1 M HCOOH). Following completion of
chromatography, TLC paper was dried and autoradio-
graphed. The relative intensities of the released Pi were
estimated by densitometric scanning using Typhoon 9210
scanner and analyzed by ImageQuant TL software (GE
Healthcare, UK).

Conclusions

In this study, we have successfully purified the highly
hydrophobic geminiviral AC3 protein from the labora-
tory strain of E. coli BL21(DE3). The purified protein was
successfully utilized in the biochemical characterization
studies. We observed that AC3 forms a higher order oli-
gomer like the AC1 protein from other geminiviruses.
AC3 interacted with AC1 but not with mole to mole ratio,
indicating self-interaction might predominate over het-
ero-interaction. The observation that AC3 enhances the
ATPase activity of AC1 gives light on the way AC3
enhances viral DNA replication. At higher concentration,
ACS3 failed to upregulate AC1-mediated ATPase activity
indicating that AC1 might not gain proper access to self-
oligomeric AC3.
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