
BioMed CentralVirology Journal

ss
Open AcceHypothesis
Replicative Homeostasis: A fundamental mechanism mediating 
selective viral replication and escape mutation
Richard Sallie*

Address: Suite 35, 95 Monash Avenue, Nedlands, Western Australia, Australia

Email: Richard Sallie* - sallier@mac.com

* Corresponding author    

Abstract
Hepatitis C (HCV), hepatitis B (HBV), the human immunodeficiency viruses (HIV), and other
viruses that replicate via RNA intermediaries, cause an enormous burden of disease and premature
death worldwide. These viruses circulate within infected hosts as vast populations of closely
related, but genetically diverse, molecules known as "quasispecies". The mechanism(s) by which this
extreme genetic and antigenic diversity is stably maintained are unclear, but are fundamental to
understanding viral persistence and pathobiology. The persistence of HCV, an RNA virus, is
especially problematic and HCV stability, maintained despite rapid genomic mutation, is highly
paradoxical. This paper presents the hypothesis, and evidence, that viruses capable of persistent
infection autoregulate replication and the likely mechanism mediating autoregulation – Replicative
Homeostasis – is described. Replicative homeostasis causes formation of stable, but highly reactive,
equilibria that drive quasispecies expansion and generates escape mutation. Replicative
homeostasis explains both viral kinetics and the enigma of RNA quasispecies stability and provides
a rational, mechanistic basis for all observed viral behaviours and host responses. More importantly,
this paradigm has specific therapeutic implication and defines, precisely, new approaches to antiviral
therapy. Replicative homeostasis may also modulate cellular gene expression.

Background
1. Disease burden
Hepatitis C (HCV), HBV and HIV are major causes of pre-
mature death and morbidity globally. These infections are
frequently life-long; Hepatitis viruses may result in pro-
gressive injury to the liver and cirrhosis, and death from
liver failure, or hepatocellular carcinoma, while HIV
causes progressive immune depletion and death from the
acquired immunodeficiency syndrome (AIDS). Together,
these infections cause millions of premature deaths annu-
ally, predominantly in "developing" countries. Other
viruses replicating via RNA intermediaries cause similar
morbidity among domestic and wild animal populations.

While education, public health measures and vaccination
(for HBV) have resulted in significant progress in disease
control, therapy of established viral infection remains
unsatisfactory.

2. Viral replication
RNA viruses and retroviruses replicate, at least in part, by
RNA polymerases (RNApol), enzymes that lack either fidel-
ity or proofreading function [76]. During replication of
hepatitis C HCV or HIV each new genome differs from the
parental template by up to ten nucleotides [61] due to
RNApol infidelity that introduces errors at ~1 × 10-5 muta-
tions / base RNA synthesised.
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Viruses replicate by copying antigenomic intermediate
templates and hence obey exponential growth kinetics,
such that [RNA]t = [RNA](t-1)ek, where [RNA]t is virus con-
centration at time (t) and k a growth constant. However,
because of RNApol infidelity, wild-type (wt) virus will
accumulate at [RNAwt]t = [RNAwt](t-1)•(1-ρ)•K1 and vari-
ant forms (mt) at [RNAmt]t ≈ ([RNAwt](t-1)•ρ + [RNAmt](t-

1))•K1, where ρ is the probability of mutation during rep-
lication and K1 = ek. Therefore, while wild-type virus pre-
dominates early, replication (and intracellular
accumulation) of variant virus and viral proteins will
accelerate (in a ratio of ([RNAwt](t-1)•ρ + [RNAmt](t-1))/
[RNAwt](t-1)•(1-ρ) compared to wild type) and variant
viral RNAs will rapidly predominate (Figure 1). Mutations
progressively accumulate in RNA viruses [17] and ulti-
mately variant RNAs and proteins, if variant RNAs are
translated, will become dominant. It is also likely some
variant viral proteins will resist cellular trafficking, further
accelerating the intracellular accumulation of variant
forms relative to wild type.

The paradox of quasispecies stability
Two fundamental problems critical to understanding
RNA virus quasispecies biology arise because of RNA
polymerase infidelity and the mode of viral replication:

1: Replication kinetics
Hepatitis C, HIV, and HBV and other viruses, have
broadly similar kinetics (Figure 2); initial high level viral
replication that rapidly declines to relatively constant low-
level viraemia [11,12], typically 2–3 logs lower than at
peak, for prolonged periods, a kinetic profile attributed to
"immune control" [12]. However, immune control is a

conceptually problematic explanation for the initial
decline in viral load; For example; why would potent host
responses (of whatever type; humoral, cell mediated or
intracellular immunity, or any combination thereof), hav-
ing reduced viral load and antigenic diversity by a factor
of 102–3 within days, falter once less than 1% of virus
remains?

Formally
1. Assume immune mechanisms reduce initial viral
replication.

2. Let Ic(t) represent the immune forces favouring viral
clearance and Ve(t) viral forces promoting quasispecies
expansion pressures at time (t).

3. Assume immune pressures Ic required to clear virus are
proportional to viral concentration [V], that is; Ve ∝ [V]
(or Ve = ke [V] where ke is some constant), so that Ic
required to clear one viral particle Ic(1) is less than that Ic
required to clear 10 viral particles Ic(10).

4. At equilibrium (e.g. time points B or C, Figure. 2)
immune clearance pressures approximate viral antigenic
expansion pressures: Ic(b or c) ≈ Ve(b or c).  Eq.1

Effect of RNApol fidelity on replicationFigure 1
Effect of RNApol fidelity on replication. Each replica-
tion cycle may produce either wild-type (Wt) or variant (Mt) 
copies of parental template in a ratio determined by 
polymerase fidelity. If HCV RNApol Mu is 10-5 mutations per 
base RNA synthesized, Mt:Wt ratio at G1 is ~9:1, by G3 
unmutated parental genome is 6.8 × 10-4of total virus popula-
tion, and by G20 7.5 × 10-22
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Viral kinetic paradoxFigure 2
Viral kinetic paradox. Viral replication kinetics (—). If 
host factors (Ic, black arrows) reduce viral replication acutely 
(point A), then they must exceed viral forces (Ve, grey 
arrows). At equilibrium (e.g. points B or C) host forces must 
balance viral forces; Ic must therefore fall by a factor of 102–3 
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5. If Ic causes the reduced viral load seen between time A
and time B or C, [Ve(a)] ⇒ [Ve(b or c)], then immune clear-
ance pressures must exceed viral expansion pressures at
that time i.e. Ic(a) > Ve(a).  Eq.2

6. As viral antigenic expansion pressures at time A exceed
those at time (B or C) by 102–3 [V(a)] ≈ [V(b or c)]• 102–3, and
Ic(b or c)= Ve(b or c) then immune clearance pressures at time
A exceed those at time (B or C) by102–3 Ic(a) >Ic(b or c)• 102–

3. That is, immune pressures fall by 102–3 between time A
and B or C, (Figure. 2).

Prompting
i) Why, and by what mechanism, would immune forces,
or any other host defense mechanisms, fall by 102–3 over
days between time A and B or C?

There is, of course, no evidence immune pressures fall,
and very considerable evidence both antibody and adap-
tive T cell responses are increasing when viral replication
is falling [5,12]. These facts are irreconcilable with the
notion that immune or other any host mechanisms con-
trol initial viral replication and strongly suggest immune
or any other host mechanism(s) are not the primary rea-
son viral load falls initially. Further, as down-regulation of
viral replication frequently occurs prior to development of
neutralising antibody, in the absence of any demonstrable
antiviral antibody, or T-cell responses [25,41], and
without lysis of infected cells [25], it is difficult to argue,
with any conviction, that either humoral or cellular
immune responses primarily cause reduced viral replica-
tion. Evidence that prior HCV infection does not confer
protective immunity against either heterologous HCV
infection in chimpanzee [22]or either homotypic [33] or
heterotypic [32] human reinfection further undermines
the paradigm of "immune control". Inhibition of
immune or other host mechanisms is an untenable expla-
nation of this massive apparent fall in immune clearance
pressures; if occurred to any degree, an increase, rather
than the observed decrease, in viremia would result. In the
absence of a rational host mechanism consistent with
observed viral kinetic data, the ineluctable conclusion is
that non-host (i.e. viral) mechanisms (i.e. viral auto regu-
lation) must be operative.

Chronic viral persistence raises other issues; At steady state
(e.g. points B or C, Figure. 2), the rate of HIV and HCV
production is estimated at 1010 molecules / day
[11,29,52,57] while HBV production may be 1011 mole-
cules/day resulting in an average viral load of 1010 mole-
cules/person [52,57]. However, during peak replication
virus production may 102–3 times the basal rate [11,12],
indicating enormous reserve replicative capacity. As basal
viral replication is clearly sufficient for long-term stability,
and kinetic analysis suggests viral, rather than host, factors

control viral replication, the following questions are
posed: When challenged, how do viruses "sense" the
threat and by what mechanism do they modulate replica-
tion in response?

Problem 2: Mutation rate
The stability of RNA viral quasispecies poses a major prob-
lem: During viral replication the copied genome may
either identical to or a variant of parental template (Fig-
ure. 1). The probability (ρ) of a mutation occurring during
replication is a function of polymerase fidelity; During
one replication cycle ρ = (1-(1-Mµ)n), where (Mµ) is muta-
tion rate and (n) genome size. Hepatitis C (a ~9200 bp
RNA virus) RNApol introduces mutation at 10-5 substitu-
tions/base, ρ≈0.912. However, for multiple (θ) replica-
tions cycles, ρ = (1-(1-Mµ)n)θ. After 20 replication cycles,
occurring in <7 days in most patients [52,57], the proba-
bility of any original genome remaining un-mutated is
ρo≈7.5 × 10-22, meaning effective loss of sequence infor-
mation, an outcome that should cause quasispecies
extinction [16]. Persistence of stable RNA viral quasispe-
cies is, therefore, highly paradoxical [18]. This "theoretical
impossibility" of RNA quasispecies stability suggests
either a) the consistently reported rates of RNApol infidel-
ity are incorrect (which, even if true, would only delay
quasispecies extinction; if Mµ = 10-10, ρo <10-40 within 100
days etc.) or b) that innate viral mechanism(s) control
RNApol fidelity and mediate selective replication of con-
sensus sequence genomes. Thus, rates of viral mutation
are tightly constrained by the necessity to retain sequence
information. On the other hand, overly faithful template
replication will restrict antigenic diversity, rendering virus
susceptible to immune destruction and unresponsive to
ongoing cellular changes. The necessity to retain sequence
information by adequate replicative fidelity, and the later
requirements (in terms of replicase ⇒ RNApol evolution)
of viruses to access cells via evolving cell receptors and
evade host defence mechanisms, has placed constraints
on replicase (RNApol) function that dictate polymerase
fidelity must be tightly, and dynamically, controlled (Fig-
ure 3a).

Evolutionary constraints on viral replication
Optimal viral replication is a compromise between max-
imising host-to-host viral transmission at each host con-
tact versus maximising transmission at sometime during
the host's life: Uncontrolled, exponential growth, as
might result from the mode of viral replication, would
cause rapid cell lysis, host death and a reduced likelihood
of stable host-to-host transmission, a prerequisite for viral
survival on an evolutionary timescale. While maximising
the probability of host-to-host transmission at each con-
tact, high-level viral replication increases the probability
of host disease, thus reducing opportunity for transmis-
sion long term. Contrariwise, adverse viral outcomes may
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a. Constraints on viral mutationFigure 3
a. Constraints on viral mutation. Inadequate polymerase fidelity will cause loss of sequence information and quasispcies 
extinction (A, B), while inadequate viral mutation will result in immune recognition and viral clearance (D,E). Viral persistence 
requires polymerase fidelity responsive to the host environment (C). 3b. Constraints on viral replication. Overly rapid 
replication will cause cell lysis, tissue injury and premature host death (A,B), while inadequate replication will result viral 
latency or clearance (D,E). Viral persistence with optimal evolutionary stability requires a polymerase responsive to the host 
environment (C).
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result from inadequate viral replication causing increased
clearance and reduced host-to-host transmission. Viruses
that cause premature host death or that are cleared by host
mechanisms before transmission to, and infection of,
other hosts are biological failures that have strong Dar-
winian pressures acting against them. Optimal long-term
viral stability, therefore, dictates viral replication rates
(that is, polymerase processivity) and mutation frequency
(that is, polymerase fidelity) must be closely regulated
(Figure 3b).

Hypothesis
That viruses capable of chronic persistence auto-regulate
replication and mutation rates by replicative homeostasis.
Replicative homeostasis results when RNA polymerase
end-translation products (envelope and contiguously
encoded accessory proteins) interact with RNApol to alter
processivity and fidelity.

Evidence for Autoregulation
Substantial clinical and in-vitro evidence, including the
kinetic paradox indicate viruses auto-regulate. During
successful antiviral treatment levels of virus fall sharply
[12,29,52,53,57], often becoming undetectable. How-
ever, viral replication rebounds, rapidly and precisely, to
pre-treatment levels on drug withdrawal in patients
[52,53,57] and in tissue culture [1]. This in-vitro data con-
firm replication is controlled by factors independent of
either cellular or humoral immune function. Auto-regula-
tion of HCV replication was confirmed most emphatically
in patients undergoing plasmapharesis in whom 60–90%
reduction in levels of virus returned to baseline, but not
beyond, within 3–6 hours of plasma exchange [44]. Stud-
ies suggesting autoregulation of tobacco mosaic virus rep-
lication occurred independent of interferon effects,
intrinsic interference or interference by defective virus
[34] confirming this phenomenon is not confined to
either animal viruses or cells. These data beg the ques-
tions: How does the replicative mechanism "choose" any
particular level of replication and how does it return, so
accurately, to pre-treatment levels?

RNA polymerase control
Most cellular enzymes are under some form of kinetic
control, usually by product inhibition. While simple neg-
ative-feedback product inhibition is sufficient to control
enzyme reaction velocity and the rate of product synthe-
sis, it is inadequate to ensure the functional quality of any
complex molecules – including proteins – synthesised.
The functionality of RNApol output depends on the func-
tionality of protein(s) translated from any RNA synthe-
sized by RNApol. For viruses, and their polymerase,
evolutionary survival – i.e. whether the polymerase, and
its viral shell, avoids immune surveillance, gains access to
cells, and replicates to infect other hosts – is a function of

the properties that the sequence, topological variability
and structural integrity of envelope proteins impart. RNA
polymerase is responsive to and is influenced by accessory
proteins that induce conformational changes to alter both
processivity and fidelity [20,31], representing partial
"proof of concept" of the mechanism postulated.

Evolutionary stability
Evolutionary stability requires adaptability to changing
environmental circumstances. For viruses, an ability to
modulate replication and mutation rates dynamically in
response to cellular changes is essential. Viruses intrinsi-
cally capable of adaptation to environmental changes,
including variations in host density, and evolving cell
receptor polymorphisms, immune and other host
responses, among other variables, will enjoy a competi-
tive advantage over viruses lacking innate responsiveness.
Contrariwise, self-replicating molecules, including
viruses, that lack innate adaptability, for whom replica-
tion is contingent upon a chance confluence of appropri-
ate cellular conditions – including permissive cell
receptors, absence of cell defences and so on – are highly
vulnerable to extinction by both adverse environmental
changes and competition for scarce intracellular resources
by molecules capable of adaptation. For viruses, this
adaptability requires antigenic and structural diversity be
controlled and, in turn, that means the two critical RNApol
attributes, fidelity and processivity, be dynamically modi-
fiable, and controllable. These linked functional require-
ments imply a dynamic nexus between the functional
output of RNApol (i.e. envelope proteins) and that
polymerase.

Homeostatic systems
Systems capable of homeostatic regulation (auto-regula-
tion) have the following characteristics: i) an efferent arm
that effects changes in response to perturbations of an
equilibrium; ii) an afferent arm that measures the systems
response to those changes; iii) mechanism(s) by which i)
and ii) communicate. The mechanism of viral autoregula-
tion – Replicative Homesostasis – described here requires:
i) that viral envelope (Env) proteins interact with viral
RNA polymerases (RNAPol); ii) that these Env :RNAPol
interactions alter both polymerase processivity and fidel-
ity; iii) that wild-type (consensus sequence) Envwt :RNAPol
complexes cause more rapid, less faithful RNA replication
than variant (variant) Envmt :RNAPol complexes. There is
solid evidence for each requirements of replicative
homeostasis.

The Envelope-Polymerase relationship: Evidence for 
mechanism
A large body of literature, for many viruses, establishes an
important relationship between envelope and polymerase
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proteins and documents that Env proteins influence both
RNAPol processivity and fidelity.

First, for HIV, overwhelming evidence suggests HIV
polymerases properties, and those of related retroviruses –
for example, simian immunodeficiency virus (SIV) and
the feline immunodeficiency virus (FIV) – are influenced
by Env proteins (for example, [9,15,35]. Broadly, these
indicate heterologous Env proteins – when administered
as live attenuated vaccines [71], adjuvant enhanced pro-
tein vaccine [83], or as recombinant Env proteins in cell
culture [64] – dramatically alter viral load, and both rep-
lication and mutation rates of wild-type virus. Specific
examples include data demonstrating HIV Env regions
obtained from different patient isolates, when cloned into
common HIV-1 backbones, conferred a spectrum of repli-
cation kinetics and cytotropisms characteristic of the orig-
inal Env clone, and independent of either the clones'
ability to raise antibody [51], or the replicative character-
istics of the 'native' polymerase backbone [51]. Similarly,
chimeric HIV-1 viruses expressing heterologous Env,
again with a common polymerase backbone, have replica-
tion kinetics and cell tropism phenotypes identical to the
parental Env clone [39], suggesting the Env is a critical
determinant of polymerase function. Similar results
obtained with SIV clones [36] strongly support conclu-
sions drawn from feline immunodeficiency virus [37]
data. Fine mapping of HIV envelope proteins identified 6
mutations within the V1-V3 loop that increased viral
replication in a manner independent of nef [77], confirm-
ing other work examining HIV Env recombinants [14],
and extending earlier work that demonstrated a single
amino acid substitution (at position 32 of the V3 Env
domain) was sufficient to change a low replication phe-
notype into high-replicating phenotype [13]. Finally, for
HIV, co-transfection with Env variants at 10 fold excess
dramatically inhibited replication of wild-type virus [75],
providing direct evidence for both the interaction and dif-
ferential affinity for wild-type and variant Env for
polymerases. Critically, many of these observations are
from in-vitro systems, indicating the effects are independ-
ent of either cellular or humoral immune influence. Many
studies report the effect of Env/polymerase interactions in
terms of altered viral tropisms, and did not examine
changes to polymerase fidelity explicitly. However, virus
replication can alter in only two ways; either there is more
or less virus, or the viral genomic sequence may be
changed by altered polymerase fidelity. Variant viruses
expressing altered envelope proteins will have altered cell
receptor affinities and hence, variable cell tropisms.

Second, for HCV, many separate observations document
HCV replication and polymerase functionality is depend-
ent on envelope proteins: i) HCV viral genotypes are
defined by sequences of either envelope or polymerase

regions [43,73,74] and these are necessarily acquired
together – a genetic nexus implying a functional relation-
ship. ii) Observations that a) co-infection with multiple
HCV genotypes occurs less frequently than predicted by
chance and b) certain HCV genotypes become progres-
sively dominant in populations both suggest – at a popu-
lation level – replicative suppression of some HCV
genotypes by others [68]. These observations are sup-
ported by observations of both homotypic [33] and heter-
otypic HCV super-infection [32] documenting genotype-
dependent replicative suppression of one HCV genotype
by another in individual patients. iii) Functional infec-
tious chimeric viruses with polymerase and Env proteins
derived from different genotypes have not been reported.
iv) Full-length HCV chimeras, engineered with deletions
of p7 envelope proteins, are replication deficient and non-
infections, indicating intact genotype-specific HCV enve-
lope sequences are essential for proper HCV replication.
Specific replacement of p7 of the 1a clone with p7 from an
infectious genotype 2a clone was replication defective,
suggesting a genotype-specific interaction between the p7
envelope protein and other genomic regions [66]. v) In
two independent chimpanzees studies HCV inoculation
resulted in persistent infection only in animals developing
anti-envelope (E2) antibodies, whereas failure to produce
anti-E2 was associated with viral clearance [4,62], intui-
tively a highly paradoxical result difficult to rationalize
unless E2 proteins are important for sustained HCV repli-
cation, as we argued previously [45]. vi) Finally, for HCV,
specific motifs within the [polymerase] NS5 region of
HCV in chronically infected patients predict response to
interferon [19,67] an observation that makes little sense
unless interferon interacts directly with NS5 [polymerase]
motifs, as in-vitro studies suggest [10].

Third, HBV envelope and polymerase protein genes have
overlapping open reading frames and significant altera-
tions in envelope and polymerase gene and protein
sequences cannot, therefore, occur independently, a
genetic nexus again implying an important functional
relationship. Mutations in envelope sequences occurring
spontaneously [82] following therapy of HBV with lamu-
vidine and immunoglobulin prophylaxis [6,72] or after
vaccine escape [8] are frequently associated with high
level viral replication, although replication-deficient
mutations are described [47]. These data are generally
interpreted to mean polymerase gene mutation(s) cause
altered polymerase protein sequence and, hence, abnor-
mal polymerase function. While this is probably partially
true if the functionally relevant HBV RNA polymerase is
an envelope/polymerase heterodimer (analogous to the
p66/p51heterodimer of HIV RT [30]), then an equally
valid interpretation is that mutations in envelope genes
may change envelope protein conformation and therefore
alter normal envelope/polymerase interactions, thus
Page 6 of 14
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altering processivity and fidelity of the replication com-
plex. This latter interpretation is convincingly supported
by data demonstrating that abnormal polymerase func-
tion of HBV envelope variants is reversed by co-transfec-
tion of Hep G2 cells with clones expressing wild-type
envelope sequences [81] and is further supported by clin-
ical studies demonstrating administration of exogenous
HBsAg (protein) to patients with chronic HBV dramati-
cally reduced HBV replication [60].

Fourth, studies of the coliphage Qβ demonstrate phage
coat proteins bind to genomic RNA [86]to strongly inhibit
(association Kic ≈ 107–8 M-1, inhibition Ki ≈ 109 M-1s-1) [79]
RNA replication by direct suppression of polymerase
activity by envelope proteins [18]. This interaction is
dependent on the binding site conformation, but not
RNA sequence[86], suggesting interaction avidity will vary
as an inverse function of protein sequence divergence
from wild type, an intuitive expectation confirmed exper-
imentally [79]. An impressive body of literature
documents similar relationships between envelope and

polymerase function in swine fever, tobacco mosaic [34],
brome mosaic [2] and other RNA viruses. Importantly,
studies of the tobacco mosaic virus confirmed this effect
to be host-independent and virus-specific inhibition of
viral RNA synthesis and to be quite distinct from any
interferon effects, intrinsic interference or interference by
defective virus [34]. Thus, there exists solid evidence for
each necessary component of replicative homeostasis for
HCV, HBV and HIV, and other viruses.

Replicative homeostasis: proposed mechanism
Replicative homeosatsis results from differential interac-
tions of wild-type (Wt) and variant (Mt) envelope pro-
teins on RNApol in a series of feedback epicycles linking
RNApol function, RNA replication and protein synthesis
(Figure 4, 5). Intracellular accumulation of variant viral
proteins causes progressive, direct, inhibition of RNApol
and also block EnvWt:RNApol interactions that increase
replication and mutation. Progressive blockade of RNApol
by variant envelope results in a less processive, more faith-
ful, polymerase, increasing the relative output of wild-
type envelope RNAs, and, subsequently, translation of
wild-type envelope proteins and, hence, an inexorable
progression to stable equilibria. Quasispecies stability,
and other consequences (including immune escape and
low-level basal replication), are inevitable outcomes that
result from equilibria reached because of these interac-
tions (Figure 5). We suggest these interactions, and the
resulting equilibria, are important therapeutic targets, and
the effective ligands – envelope proteins or topologically
homologous molecules – implicit within this hypothesis.

Viral polymerases are clearly the effector mechanism – the
efferent arm – that determines rate of viral RNA replica-
tion and mutation. The afferent arm needs to measure
both the rate of viral replication and degree of viral muta-
tion. Intracellular envelope concentrations are a direct
function of effective viral replication, while competition
between wild-type and variant envelope proteins for inter-
action with RNApol allows determination of viral muta-
tion rates. Envelope proteins, as opposed to other viral
products, are the obvious products to examine for func-
tional variability, and must form part of the afferent arm
necessary to "sense" perturbations in the viral equilib-
rium. While other viral products could be "sensed" to
gauge effective viral replication, only functional measure-
ment of envelope protein concentration and topological
variability simultaneous measures both the rate of viral
replication and envelope functions – properties deter-
mined by envelope structure and antigenic diversity –
essential for viral survival; immune escape and cell access.
Furthermore, envelope and polymerase proteins are typi-
cally coded at transcriptionally opposite ends of the viral
genome; replication contingent upon a dynamic nexus
between envelope and polymerase proteins is, therefore, a

Mechanism of replicative homeostasisFigure 4
Mechanism of replicative homeostasis. At A, relatively 
high concentrations of EnvWt (blue, A) favour high affinity 
Env:RNApol interactions out-competing variant forms (Envmt, 
red), increasing RNApol processivity but reduced fidelity 
increasing relative output of variant RNAs. Subsequent ribos-
omal (R, mauve) translation increases concentrations Envmt 
(red), relative to EnvWt, returning the system to equilibrium. 
Relative excess Envmt (B, red) out-compete EnvWt (blue) for 
interactions with RNApol, favouring Envmt:RNApol, and block-
ing EnvWt:RNApol interactions. Envmt:RNApol complexes rela-
tively decrease RNApolprocessivity but increase fidelity, 
increasing output of wild-type RNAs. Subsequent increased 
translation of EnvWt relative to Envmt restores the 
equilibrium.
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Conseqences of replicative homeostatic cyclesFigure 5
Conseqences of replicative homeostatic cycles. Disturbance to intracellular replicative homeostatic cycles. Events 
increasing intracellular EnvWt: Envmt ratio (exogenous addition of EnvWt, antibody recognition of Envmt) will favour 
EnvWt:RNApol interactions, increasing RNApol processivity and reducing fidelity increasing relative output of variant virus. Con-
versely, events decreasing intracellular EnvWt: Envmt ratios (exogenous addition of Envmt, antibody recognition of EnvWt) will 
favour Envmt:RNApol interactions, decreasing RNApol processivity and increasing fidelity, thus reducing replication.
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functional check of the integrity of the entire viral
genome. Importantly, this facet of replicative homeostasis
is a direct mechanism of Darwinian selection operating at
a molecular level, that ensurs preferential selection and
replication of "fit" viral genomes, and maintenance of
genotypes (species).

Viruses, notably HIV, produce many accessory proteins
(such as HIV Nef, gag, rev and HBeAg) that affect viral rep-
lication and mutation rate. However, these proteins are
encoded within envelope open reading frames (ORFs) or
are contiguous with them and are likely to alter function-
ally with any mutation affecting envelope sequences (Fig-
ure 6). While these accessory proteins may interact with
RNApol (with or without Env) to reset replicative equilib-
rium (by changing replication rate or mutation frequency
or both), stable equilibria will still result providing the
sum effect of variant proteins encoded within the enve-
lope ORF is to decrease RNApol processivity (v) and muta-
tion (Mu) frequency relative to wild-type protein
polymerase interactions.

Testing the hypothesis
This hypothesis is simply tested. Manoeuvres that increase
intracellular concentrations of variant envelope proteins
or decrease wild-type envelope proteins should inhibit
viral replication and reduce mutation rates. Conversely,
manoeuvres increasing intracellular [EnvWt] or reducing
intracellular [Envmt] should accelerate viral replication
and mutation. In fact, observations relevant to every
aspect of this hypothesis have been reported in a variety of
systems and circumstances. All outcomes are completely
consistent with those predicted by replicative homeosta-
sis. Replicative homeostasis predicts, for example, HCV E2
proteins derived from genotype 1 HCV sequences would
reduce HCV replication when administered to patients
with heterologous HCV infection (genotypes 2,3 or 4, for
example) and studies examining heterologous envelope
proteins as direct RNApol inhibitors are underway.

Discussion
Replicative homeostasis immediately resolves the paradox
RNA viral quasispecies stability and explains how these
viruses persist and, thereby, cause disease. Replicative
homeostasis also explains the initial decline of viral repli-
cation, resolving the kinetic paradox, rationalizing the
dynamics of chronic viral infection and other enigmatic
and unresolved viral behaviours. Most importantly, repli-
cative homeostasis implies a general approach to antiviral
therapy.

The equilibria formed by replicative homeostasis are
responsive to disturbance of envelope concentrations
ensuring viral mutation is neither random nor passive but
highly reactive to external influence: Sustained reduction

of viral envelope (by immune or other mechanisms)
would favour high affinity EnvWt: RNApol interactions that,
in turn, increase polymerase processivity but reduce fidel-
ity accelerating synthesis of variant viral RNAs and, conse-
quently, increased translation of antigenically diverse
proteins, reactively driving quasispecies expansion and
generating the extreme antigenic diversity of RNA
quasispecies. Alternatively, in the absence of immunolog-
ical recognition, variant envelope / polymerase interac-
tions predominate, restricting viral replication and
mutation, thus maintaining basal output of consensus
viral sequences, thus maintaining genotype. Immune
escape and maximal cell tropism are inevitable conse-
quences of the potential antigenic diversity generated by
RNA replication mediated by the reactive equilibria of
replicative homeostasis.

Potential viral antigenic diversity is numerical superior to
any immune response; Theoretically, a small envelope
protein of 20 amino acids could assume 2020 (about 1026)
possible conformations, greatly exceeding the ~1010 anti-
body [80] or CTL receptor conformations either humoral
and cellular immune responses can generate. A direct
consequence of this mismatch and the stable reactive,
equilibria resulting from replicative homeostasis is that
once infection is established, the clinical outcome is pri-
marily determined by the viruses' ability to maintain
control of the quasispecies, rather than the hosts' response
to that quasispecies. This sanguine view is supported by
both general clinical experience and by kinetic analysis of
chronic viral infection (Figure 2); if host responses are
unable to clear virus at 105–7 viral equivalents / ml they are
not likely to be any more effective at 108–11 eq/ ml.

The varied clinical outcomes of viral infections are
explained by replicative homeostasis and its failure: Viral
failure to down-regulate replication by RNApol inhibition
would cause rapidly progressive or fulminant disease
(characterised by massively polyclonal, but ultimately
ineffectual, immune responses), while inadequate replica-
tion or generation of diversity will result in viral clearance
(Figure 3b). Stable, homeostatic replicative equilibria will
result in chronic infection with episodic fluctuations in
viral replication and host responses (eg ALT; [65]) typical
of chronic hepatitis or HIV. The widely varied spectrum
and tempo of viral diseases, that for viral hepatitis ranges
from asymptomatic healthy chronic carriage to fulminant
liver disease and death within days, is far more rationally
explained on the basis of a broad spectrum of polymerase
properties than highly variable and unpredictable (yet
genetically homogeneous) immune responses.

Homeostatic systems functioning without external pertur-
bations – such as thermostatically controlled water tanks
– progress rapidly to stasis (Figure 7). In tissue culture,
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Phenotypic effects of RNA quasispecies complexityFigure 6
Phenotypic effects of RNA quasispecies complexity. Two-dimensional representation of multi-dimensional hyperdense 
sequence-space that define viral quasispecies; vast RNA /proteins populations progressively divergent from consensus 
sequence (0). As genetic the distance of RNAs increases from consensus sequence the amino acid sequence, conformation, and 
functional properties of resulting proteins may also change, potentially resulting in proteins that, despite originating from iden-
tical [consensus sequence] genetic domains, have diametrically opposed function. As many accessory proteins (for example, 
HIV rev, tat, nef and HCV HP7) have open reading frames contiguous with Envelope, sequence changes to Env will also affect 
accessory protein function.
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viruses – replicating without immune challenge – are una-
ble (and do not need) to generate antigenic diversity by
replicative homeostasis, a phenomenon probably respon-
sible for attenuation of virulence of serially passaged virus
cultures. By contrast, in dilute viral culture, where viral
envelope and polymerase exist in low concentrations,
high affinity EnvWt/polymerase interactions preferentially
occur over lower affinity Envmt /polymerase interactions,
replicative homeostasis predicts increased viral replica-
tion and mutation would occur and this has been con-
firmed [70]

Perturbations of relative intracellular wild-type and vari-
ant envelope concentrations alter RNApol:Env interactions
disturbing the replicative equilibria of replicative home-
ostasis. Antibodies (or CTL) will alter extracellular con-
centrations of Env proteins, thus changing intracellular
envelope concentrations once extracellular /intracellular
Env concentrations equilibrate. Therefore, antibodies to
heterologous envelope proteins – developing, for exam-
ple, during immunization against other viruses or hetero-
typic co-infection – will reduce relative intracellular
concentrations of variant envelope, favouring
RNApol:EnvWt interactions, thus enhancing replication
and increasing mutation rates, a prediction confirmed in
practice [38,56]. Contrariwise, antibodies to wild-type
surface proteins – for example, during administration of
anti-HBsAb following liver transplantation for HBV [63] –
would reduce viral replication (Figure 6), as seen in prac-
tice. Disturbance of viral replicative equlibria by heterolo-
gous extracellular antibodies rationally explains antibody-
dependent enhancement (ADE) of HIV [23], Dengue

[26], Murray Valley encephalitis[84], Ebola [78] Cox-
sackie [24] and other viruses. Similarly, increased HIV rep-
lication and mutation after influenza [38] or tetanus [56]
vaccination; reduced HIV replication during measles [50]
and Dengue [85] co-infection; clearance of HBV without
hepatocyte lysis or evidence of T cell dependent
cytotoxicity[25], are also explained by this mechanism.
Previously unexplained and problematic viral behaviours
and host responses, including long-term non-progression
of HIV [7]; persistence of transcriptionally active HBV
despite a robust immune response [48]; long-term anti-
genic oscillations [54]; spontaneous reactivation of
HBV[41] (among many other viruses); and
hypermutation of HIV, for example, all rationally resolve
within this conceptual framework.

There are clear and quite specific therapeutic implications
of replicative homeostasis, as well as more general impli-
cations. The envelope/polymerase interactions of replica-
tive homeostasis suggested herein are obvious therapeutic
targets, and a site of interferon action: Heterologous enve-
lope proteins from different viruses or genotypes of the
same virus, or their structural homologues, are likely to
inhibit viral replication, as suppression of HIV replication
during measles [50] and Dengue [85] co-infection sug-
gests. Interferon is ineffective for HIV and many patients
with HBV, and its efficacy in HCV is highly genotype-
dependent, strongly implying a direct, virus-specific
action unrelated to "immune enhancement", as in-vitro
data [10] and clinical kinetic studies imply [52].
Complexing of interferon to RNApol to reduce processivity
and increase fidelity would explain both the genotype spe-
cificity of interferon action and the kinetics of action and,
incidentally, the apparent "immune enhancement" [59]
caused by interferon; if interferon reduces RNApol proces-
sivity while increasing its fidelity, viral RNAs synthesized
will contain fewer mutations causing synthesis of antigen-
ically restricted proteins, thus presenting a more homoge-
neous target susceptible to immune attack.

Replicative homeostasis may alter perceptions of strate-
gies underpinning the immune responses. It is possible
the primary purpose of the initial polymorphic humoral
response to viral infection – typically pentameric IgM – is
to push viral replication towards equilibria favouring pro-
duction of homogeneous virus, thus facilitating a
concerted and more focussed humoral and/or cytotoxic T
cell response; Strong neutralizing IgG antibodies – antiH-
BsAg, for example – may develop as a consequence of ini-
tially restricted viral replication and mutation permitting
effective and specific immune recognition, rather than
being the proximate cause of it. The temporal profile of
HBsAb, that develops well after HBVreplication falls,
strongly supports this view. However, once developed,
high-affinity neutralizing antibodies against wild-type

Homeostatic systemsFigure 7
Homeostatic systems. In absence of external influence, 
homeostatic systems (A) progress rapidly to stasis (0) while 
external perturbations (arrows, e.g. immune recognition of 
virus) cause pseudo-chaotic fluctuating long-term behaviours 
in complex systems (B).
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virus ensure variant envelope proteins remain dominant
within cells, thus maximising polymerase inhibition and
inhibiting viral replication.

Replicative homeostasis is an adaptation that facilitates
stable viral replication in cells and maximises probability
of cell-to-cell (and host-to-host) transmission, a prerequi-
site for viral survival on an evolutionary time scale (Figure
3). A subtle, more primordial, and evolutionary function
of envelope/polymerase interactions may explain the ori-
gins of replicative homeostasis; Polymerase function con-
tingent upon recognition of, and response to, complex
three-dimensional complementarities between polymer-
ase and envelope proteins constitutes a sophisticated
encryption technique, effectively "locking" the polymer-
ase, thereby minimises the likelihood any competing RNA
(or DNA) molecules are replicated even if correct 5' tran-
scription initiation sequences are present. This is, again, a
powerful mechanism of selection, speciation and geno-
type preservation. As Spiegleman suggested originally
[55], in the fierce competition for finite intracellular
resources, reproductive strategies that maximise prolifera-
tion of "self" genes, while thwarting propagation of
"rival" genes, are strongly selected for, and are highly con-
served in evolution. The interferons, and other cytokines,
are cellular defence mechanisms that long antedate the
immune system. If the interferons are functionally homol-
ogous to viral envelope proteins, and interact with viral
RNApol to reduce processivity and replication to restrict
viral replication and antigenic diversity, increasing their
susceptibility to immune clearance, it is possible these
genes were acquired as result of positive selection of ben-
eficial virus-cell symbiosis occurring early in eukaryotic
cellular evolution, a process responsible for retention of
other genes [28].

Although proposed specifically to explain RNA viral qua-
sispecies stability, replicative homeostasis is, fundamen-
tally, a mechanism that regulates RNA transcription and
modulates protein expression. If proteins (i.e. phenotype)
modulate RNApol properties (in a manner contingent on
that proteins functionality) and modulate mutations
introduced into the RNA templates RNApol synthesises, a
subtle form of "quality control" is exerted over protein
synthesis [69]. This mechanism accelerates, and directs,
adaptation: While introduction of lethal mutations to
most RNA genomes may not adversely influence quasis-
pecies, replicative homeostasis ensures any RNA muta-
tions that do arise, and that result in beneficial
phenotype(s), will favour replication of that RNA mole-
cule, ensuring that phenotype is retained within the
quasispecies. Minor change to polymerase fidelity will
profoundly effect a quasispecies; as Haldane demon-
strated [27], a reproductive advantage of only 0.1% is suf-
ficient to increase a gene frequency from 0.1% to 50%

over a few thousand generations (~1 year for the average
patient with HCV) and this effect, therefore, represents a
major moulding force in evolution. Thus, replicative
homeostasis provides a powerful counterbalance to
Muller's ratchet [17] and, by promoting retention and
transmission of acquired phenotype, is a Lamarkian
mechanism fully consistent with Darwinian principles
and operative at a molecular level.

Finally, accessory proteins that alter the processivity and
fidelity of both DNA-dependent RNA polymerases [31]
and DNA-dependent DNA polymerases [42] to modulate
polymerases activity are strongly conserved in evolution,
suggesting a critical cellular function. Control of DNA-
dependent RNApol transcription by DNA viruses, cellular
micro-organisms (e.g. malaria), and eukaryotic cells,
subtly modulating cell-surface protein expression, via rep-
licative homeostasis, to mediate immune escape, control
cell division and differentiation, or other functions would
not be surprising.
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